期刊文献+

高频段频谱占用的Volterra预测方法研究

Volterra Prediction Method for Congestion in High-Frequency Spectrum
下载PDF
导出
摘要 为了能够给高频用户提供较为可靠的空闲频段,需要对高频段频谱占用的情况进行预测。本文提出一种基于自适应Volterra滤波理论的预测方法,通过对频谱占用因子时间序列进行状态空间重构,并采用递推形式的自适应递归最小二乘算法实时调整Volterra模型的核系数。实际数据处理结果表明,该预测方法能够很好地跟踪频谱占用因子的非线性变化,具有预测误差小,训练计算复杂度低等优点。 It is necessary to predict the spectrum occupancy so as to provide high-frequency users with reliably available band. This paper proposes a prediction method based on adaptive Volterra filter theory,which reconstructs the congestion time series based on State-space Reconstruction theory and modifies the kernel coefficients of Volterra model in real-time with RLS algorithm. Experiments are implemented based on real measurements and the results demonstrate that Volterra prediction method can effectively capture nonlinear variations of congestion,as well as it has the advantages of a small forecasting error and a low computational complexity in the training process.
出处 《信号处理》 CSCD 北大核心 2015年第9期1159-1164,共6页 Journal of Signal Processing
基金 国家自然科学基金(61201304) 航天支撑技术基金(2013-HT-HGD-H22) 哈尔滨市科技创新人才专项资金(2013RFQXJ097)资助
关键词 频谱占用 高频 自适应预测 Volterra滤波 spectrum occupancy high-frequency adaptive prediction Volterra filter
  • 相关文献

参考文献14

  • 1Francis N M, Cannon P S, Brown A G, et al. Nonlinear prediction of the ionospheric parameter foF2 on hourly, daily, and monthly timescales [ J ]. Journal of Geophysi-cal Research, 2000, 105(A6) : 12839-12849.
  • 2Gott G F, Poole C R, Layeock P J, et al. Spectral occupan- cy-measurement system and mathematical models [ C ]//HF Radio Systems and Techniques, 1991. Fifth International Conference on. Edinburgh: IEEE, 1991: 332-336.
  • 3Economou L V, Haralambous H, Pantjairos C A, et al. Models of HF spectral occupancy over a sunspot cycle [ J ]. Communications, lEE Proceedings-, 2005, 152 (6) : 980-988.
  • 4Haralambous H, Papadopoulos H. 24-Hour neural net- work congestion models for high-frequency broadcast users [J ]. Broadcasting, IEEE Transactions on, 2009, 55 ( 1 ) : 145-154.
  • 5王成章,尤梅芳,郝杨译.时间序列分析--预测与控制[M].北京:中国机械出版社,2011:30-53.
  • 6曾凡仔,裘正定.基于小波分解的AR-SVR一类非平稳时间序列预测[J].信号处理,2004,20(2):108-111. 被引量:8
  • 7Sapankevych N I, Sankar R. Time series prediction using support vector machines : a survey[ J]. Computational In- telligence Magazine, IEEE, 2009, g (2) : 24-38.
  • 8Mathews V J. Adaptive polynomial filters [ J ]. Signal Processing Magazine, IEEE, 1991, 8 (3) : 10-26.
  • 9刘郁林,万群,王跃华,等,译.自适应滤波算法与实现[M].第四版.北京:电子工业出版社,2014:325-326.
  • 10张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000,49(3):403-408. 被引量:149

二级参考文献21

  • 1李文化,王智顺,何振亚.用于跳频多址通信的混沌跳频码[J].通信学报,1996,17(6):17-21. 被引量:45
  • 2王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 3Low D J, Addison P S. Chaos in a car-following model with a desired headway time [C]//Proceeding of the 30th ISATA Conferenee.Florence:ISATA, 1997:175-182
  • 4Takens F. On the numerical determination of the dimension of an attractor [ M ].Berlin:Spring-Verlag, 1985,1125: 366- 381
  • 5Fraser A M. Swinney H L. Independent coordinates for strange attractors from mutual information [J]. Physical Review A, 1986, 33(2): 1134-1140
  • 6Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase space reconstruction using a geometrical construction [J]. Physical Review A, 1992, 45 (6): 3403-3411
  • 7Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest lyapunov exponents from small data sets [J]. Physica D, 1993, 65:117-134
  • 8Douglas S C, Meng T H-Y. Normalized data nonlinearities for LMS adaptation [J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1352-1365
  • 9Peter J.Brockwell Richard A.Davis,Time Series:Theoryand Methods Springer-Vedag world publishing corpo—ration 1991.
  • 10Paul Cristea etal.Time Series Prediction with Wavelet Neural Networks.5^th Seminar Neural Network Application in Electrical Engineering September 25—272000.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部