摘要
基于组合预测思想,结合BP神经网络和马尔科夫链2种预测方法,构建了一种新维BP神经网络-马尔科夫链大坝沉降预测模型。通过对训练样本的学习,利用新维改进的BP神经网络算法实现了对沉降位移时间序列的滚动预测。在此基础上,借助马尔科夫链模型对其随机扰动误差进行修正,有效地提高了预测结果的精度。将构建的组合模型应用于长洲大坝船闸控制楼沉降位移时序预测中,研究结果表明该模型预测精度较高、可靠性好,提高了模型的中长期预测能力,为大坝沉降预测提供了一种有效的新方法。
A dam settlement prediction model integrating BP neural network model and Markov chain prediction was built in this paper.Through emulating the training samples,rolling prediction for the settlement displacement time series was performed by the metabolism-improved BP neural network algorithm.Furthermore,Markov chain was used to correct its random disturbance and the prediction results were improved.This model was applied to the set-tlement displacement timing prediction of Changzhou dam lock control building.The result shows that the model has high prediction accuracy and good reliability.It improves the long-term prediction ability,and provides an effective method for dam settlement prediction.
出处
《长江科学院院报》
CSCD
北大核心
2015年第10期23-27,32,共6页
Journal of Changjiang River Scientific Research Institute
关键词
沉降预测
BP
神经网络
马尔科夫链
大坝监测
长洲水利枢纽
settlement prediction
BP neural network
Markov chain
dam monitoring
Changzhou water power junc-tion