期刊文献+

基于动态蚁群遗传算法的士兵个性化学习 被引量:2

Soldier's Personalized Learning Based on Dynamic Ant-Genetic Algorithm
下载PDF
导出
摘要 面对士兵学历层次,知识理解能力和掌握速度参差不齐的现状,千篇一律的士兵职业技能教育体制已不再适应网络化时代发展和信息化部队建设的需要.文章在分析了当前士兵职业技能教育存在的问题以及蚁群算法和遗传算法各自的特点之后,提出了根据最佳融合点交叉调用蚁群算法和遗传算法的策略,以使蚁群算法的寻优结果作为遗传算法的种子来优化其初始种群,并模仿TSP问题将士兵的个性化学习过程成功地转化为一个典型的组合优化问题,以此来寻找适合每位士兵的个性化学习路径.实验结果表明,改进后的蚁群遗传算法的收敛速度和寻优能力大大提高. Confronting the situation of uneven educational background, knowledge comprehension and master speed ot soldiers, stereotype education system of soldier's occupational skill no longer adapts the demand of network era development and informational military construction. The paper puts forward to the tactic of dynamically call ant algorithm and genetic algorithm according to the best fusion point after analyzing the existing problems in soldier's occupational skill education and the features of ant algorithm and genetic algorithm, so as to urge the optimization results of ant algorithm to optimize the initializing population of genetic algorithm. In addition, in order to find the personalized learning path suited to every soldier, the personalized learning process of soldiers is transformed into a typical combinatorial optimization problem successfully by imitating traveling salesman problem. The experiment results show that the convergence rate and optimization capability of the improved ant colony genetic algorithm is greatly improved.
作者 李东 王虎强
出处 《计算机系统应用》 2015年第11期204-208,共5页 Computer Systems & Applications
关键词 士兵个性化学习 动态蚁群遗传算法 最佳融合点 最优路径 soldier's personalized learning dynamic ant-genetic algorithm the best fusion point the optimal path
  • 相关文献

参考文献6

二级参考文献38

  • 1李曼,王大治,杜小勇,王珊.基于领域本体的Web服务动态组合[J].计算机学报,2005,28(4):644-650. 被引量:141
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3蔡光跃,董恩清.遗传算法和蚁群算法在求解TSP问题上的对比分析[J].计算机工程与应用,2007,43(10):96-98. 被引量:29
  • 4KIRKPATRICK S, GELATT JR,VECCHI JR. Optimization by simulated annealing[J]. Science,1983,220:671- 680.
  • 5Stutzle T, Hhoos H. The MAX-MIN ant system and local search for the traveling salesman problem[C]// Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC197). Indianapolis, USA, 1997:309-314.
  • 6黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 7Dorigo M, Maniezzo V, Colorni A. Ant system: optimiza tion by a colony cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 1996,26(1): 29-41.
  • 8Dorigo M, Gambardella L M. Ant colony system.. A cooper ative learning approach to the traveling salesman problem IEEE Transactions on Evolutionary Computation, 1997 1(1): 53-66.
  • 9Dorigo M, Caro G D, Gambardella L M. Ant algorithms for discrete optimization. Artificial Life, 1999, 5(2): 137-172.
  • 10Guo Su-Chang, Huang Hong Zhong, WANG Zhong-Lai, Xie Min. Grid service reliability modeling and optimal task scheduling considering fault recovery. IEEE Transactions on Reliability, 2011, 60(1): 263-274.

共引文献171

同被引文献18

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部