期刊文献+

铂-全氟磺酸复合材料的传感性能

Sensing performances of platinum-perfluorosulfonic acid composites
原文传递
导出
摘要 为研究铂-全氟磺酸(Pt-PFSA)复合材料的传感特性,首先,测试了在阶跃激励和正弦激励下,Pt-PFSA复合材料的响应输出电压;然后,采用化学镀方法,将铂原子沉积在由Nafion溶液制备的0.4mm厚的Nafion阳离子交换膜的两个表面上;最后,考察了含水量对Pt-PFSA复合材料输出电压的影响,预测了正弦激励下PtPFSA复合材料的传感性能,进行了不同频率的正弦激励实验。结果表明:采取保湿措施后,含水量变化导致的输出电压降低幅度低于5%;在阶跃激励信号下,当Pt-PFSA复合材料的应变为0.1%时,输出电压具有时延;给出了Pt-PFSA复合材料的灵敏系数表达式,当正弦激励信号频率为5.9Hz时,复合材料的灵敏系数为3.555 8mV/0.2%,得到的实验结果与预测吻合较好。研究为Pt-PFSA复合材料传感性能模型的建立奠定了基础。 In order to investigate the sensing properties of platinum-perfluorosulfonic acid (Pt-PFSA) composites, the response output voltage of Pt-PFSA composites under step excitation and sine wave excitation was measured firstly. Then, by means of chemical plating method, the platinum atomic was deposited on the two surfaces of Na- lion cation exchange membranes manufactured by Nation solution whose thickness was 0.4 ram. Finally, the effects of water content on the output voltage of Pt-PFSA composites were investigated, the sensing performances of Pt- PFSA composites under sine excitation were predicted and the sine excitation experiments of different frequencies were conducted. The results show that after the adoption of moisturizing treatment, the reduction of output voltage caused by water content change is lower than 5%. Under the step excitation signal, when the strain of Pt-PFSA composites is 0. 1%, output voltage has time delay. The sensitivity coefficient expression of Pt-PFSA composites is given, and the sensitivity coefficient of composites is 3. 555 8 mV/0.20% when the signal frequency of sine wave ex- citation is 5.9 Hz. The obtained experiment results agree well with the predictions. The research lay the foundation
出处 《复合材料学报》 EI CAS CSCD 北大核心 2015年第5期1510-1516,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11372132) 江苏高校优势学科建设工程
关键词 铂-全氟磺酸 阶跃响应 谐波激励 传感性能 灵敏系数 复合材料 platinum-perfluorosulfonic acid step excitation harmonic excitation sensing performance sensitivitycoefficient composites
  • 相关文献

参考文献15

  • 1Shahinpoor M. Ionic polymer-conductor composites as biomi- metic sensors, robotic actuators and artificial muscles-A re- view[J]. Electrochimica Acta, 2003, 48(14): 2343-2353.
  • 2Shahinpoor M. Mechanoelectrical phenomena in ionic poly- mers[J]. Mathematics and Mechanics of Solids, 2003, 8(3) : 281-288.
  • 3de Gennes P G, Oknmnra K, Shahinpoor M, et al. Mechano- electric effects in ionic gels[J]. Europhysics Letters, 2000, 50(4) : 513-518.
  • 4Punning A, Kruusmaa M, Aabloo A. A self-sensing ion con ducting polymer metal composite (iPMC) actuator[J]. Sen sors and Actuators A, 2007, 136(2): 656-664.
  • 5Bonomo C, Fortuna L, Giannone P, et al. A method to char acterize the deformation of an IPMC sensing membrane[J]. Sensors and Actuators A: Physical, 2005, 123-124: 146-154.
  • 6卞侃,熊克,朱程燕,顾莉莉,陈骐.银型离子聚合物金属复合材料传感性能[J].复合材料学报,2012,29(6):113-119. 被引量:3
  • 7Newbury K M, Leo D J. Linear eleetromeehanical model of ionic polymer transducers-Part II: Experimental validation [J]. Journal of Intelligent Material Systems and Structures, 2003, 14(6): 343-357.
  • 8Nam D N C, Ahn K K. Analysts and experiment on a self- sensing ionic polymer-metal composite actuator[J]. Smart Materials and Structures, 2014, 23(7) : 074007.
  • 9Caponetto R, de Luea V, Graziani S, et al. An optimized fre- quency-dependent multiphysics model for an ionic polymer- metal composite actuator with ethylene glycol as the solvent [J]. Smart Materials and Structures, 2013, 22(12) : 125016.
  • 10Pudipeddi A, Kim D, Kim K J. Sensory behavior of ionic polymer metal composite[C]//Proceedings of Smart Struc- tures and Materials 2006: Electroactive Polymer Actuators and Devices. Bellingham: Society of Photo-Optical Instru- mentation Engineers, 20067 61681Y. 1-61681Y. 10.

二级参考文献44

  • 1唐运军,唐华平,殷陈锋.一种离子交换树脂金属复合材料(IPMC)的力学参数测定[J].高技术通讯,2007,17(5):508-511. 被引量:9
  • 2李丰富,张玉军,郑岩.EDS法分析离子交换膜金属复合材料的铂电极厚度[J].哈尔滨理工大学学报,2007,12(2):138-140. 被引量:2
  • 3Colozza R A. Solid state aircraft phase Ⅱ final report[R]. Project NASS-03110,2005.
  • 4Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and smart material based vibration sensor/damper[J]. Smart Materials and Structures, 1992,1(2) : 172-179.
  • 5Shahipoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles[J]. Smart Materials and Structures, 1992, 1 (1) :91-94.
  • 6Oguro K, Kawami Y, Takenaka H. Bending of an ionconducting polymer film-electrode composite by an electric stimulus at low voltage[J]. Journal of Micromachine Society,1992(5) z27-30.
  • 7Shahinpoor M, Kim K J. Mass transfer induced hydraulic actuation in ionic polymer-metal composites[J]. Journal of Intelligent Material Systems and Structures, 2002,13 ( 6 ) : 369-376.
  • 8Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites[J]. Journal of Applied Physics, 2002,92(5):2899 2915.
  • 9Nemat-Nasser S, Wu Y X. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics,2003,93(9):5255-5266.
  • 10Nemat Nasser S, Zamani S. Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents[J]. Journal of Applied Physics,2006,100 (6) :064310.1-064310. 18.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部