期刊文献+

基于改进的引力搜索算法的T-S模型辨识 被引量:3

T-S Model Identification Based on an Improved Gravitational Search Algorithm
下载PDF
导出
摘要 针对引力搜索算法在求解复杂问题时搜索精度较低、易出现早熟收敛的缺点。提出一个新颖的智能算法-基于基因突变的引力搜索算法来辨识T-S模型的参数,同时提出一种改进的聚类算法辨识T-S模型的结构,实验结果表明,改进算法辨识出的T-S模型结构紧凑、精度更高,且泛化能力强。 As the gravitational search algorithm plays a negative influence on the search accuracy of the complex issues, especially the poor search quality of standard Gravitational Search Algorithm(GSA) in the high dimensional function optimization, it is easy to get into premature convergence in the optimization process. An improved gravita- tional search algorithm based on genetic mutations(gmGSA) is proposed to identify the parameter of T-S model. An improved fuzzy c-means(FCM) based on simulated annealing(SA) and genetic algorithm(GA), denote as SAGA- FCM, is also proposed to identify the structure of T-S model. The simulation results show the proposed methods can effectively obtain compact and accurate fuzzy models with excellent capability of generalization.
出处 《电子科技》 2015年第11期16-20,共5页 Electronic Science and Technology
基金 沪江基金资助项目(A14001 B1402 D1402)
关键词 T-S模型辨识 基因突变 FCM聚类 引力搜索算法 identification of T-S model genetic mutations FCM clustering gravitational search algorithm
  • 相关文献

参考文献18

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [ J ]. IEEE Transactions on System, Man, Cybem, 1985,15 ( 1 ) : 116 - 132.
  • 2Han P, Shi J, Wang D, et al. FCM clustering algorithm for T -S fuzzy model identification [C]. 2010 International Con- ference on Machine Learning and Cybernetics (ICMLC), IEEE,2010.
  • 3Rashedi E, Nezamabadi - pour H, Saryazdi S. Gsa: A gravita- tional search algorithm [J]. Information Science, 2009, 179 (13) :2232 -2248.
  • 4Rashedi E, Nezamabadi - pour H, Saryazdi S. BGSA : binary gravitational search algorithm [ J]. Natural Computing,2010, 9(3) :727 -745.
  • 5Srafrazi S, Nezamabadi - Pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm [ J ]. Scientia Iranica,2011,18(3) :539 -548.
  • 6Hedar A, Ali A F, Abdel - Hamid T H. Genetic algorithm and tabu search based methods for molecular 3D - structure prediction [J]. Numer Algebra Control Optim, 2011 ( 1 ) : 191 - 209.
  • 7Moret M A,Pascutti P G,Bisch P M, et al. Stochastic molec- ular optimization using generalized simulated annealing [ J]. Journal of Computer Chemstry, 1998 (19) :647 - 657.
  • 8丁学明.基于最小二乘支持向量机的T-S模型在线辨识[J].信息与控制,2007,36(4):451-454. 被引量:3
  • 9Sugeno M, Yasukawa T. A fuzzy - logic - based approach to qualitative modehng [ J]. IEEE Transactions on Fuzzy Sys- tems,1993,1 (1) :7 -31.
  • 10Kim E,Park M,Ji S,et al. A new approach to fuzzy modeling [J]. IEEE Transactions on Fuzzy Systems, 1997, 5 (3) :328 - 337.

二级参考文献7

  • 1Buckley J J.Sugeno type controllers are universal controllers[J].Fuzzy Sets and Systems,1993,53(3):299.
  • 2Chiu S L.Fuzzy model identification based on cluster estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.
  • 3Qi R Y,Brdys M A.Adaptive fuzzy modelling and control for discrete-time nonlinear uncertain systems[A].Proceedings of the 2005 American Control Conference[C].Piscataway,NJ,USA:IEEE,2005.1108-1113.
  • 4Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer-Verlag,1995.
  • 5Suykens J A K,Vandewale J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293 - 300.
  • 6Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Transactions on Systems,Man,and Cybernetics,1985,SMC-15(1):116-132.
  • 7阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报,2004,38(4):524-526. 被引量:55

共引文献2

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部