期刊文献+

模糊神经网络像素分类的稀疏表示医学CT图像去噪方法 被引量:3

Research of Sparse Representation Medical CT Image Denoising using Pixels Classification by Fuzzy Neural Network
下载PDF
导出
摘要 在医学CT成像过程中,由于引入了不可避免的噪声,致使图像质量下降,影响临床诊断。因此,研究医学CT图像降噪方法在诊疗服务中具有重要意义。本文结合图像分割的思想,利用模糊神经网络将图像像素分成边缘区、平滑区与纹理区等不同图像区域,通过小波稀疏表示对不同类型的图像块进行阈值去噪处理,以便更好地保留医学CT图像的细节特征。实验结果表明,本文算法对医学CT图像降噪有一定的效果,峰值信噪比(PSNR)和结构相似性指数(SSIM)都得到了改善,更好并且很好地保留CT图像的细节信息。 In medical CT imaging procedure,the unavoidable noise,results in image degradation,and has an influence on clinical diagnosis. Therefore,the study of medical CT image denoising method has great significance in the diagnosis and treatment services. In this paper,combined with the idea of image segmentation,image pixels are divided into edge region,texture smooth area using fuzzy neural network. Threshold denoising was present in wavelet sparse representation for different images. It better preserves the details of medical CT image. Experimental results show that The algorithm can effectively remove noise. The peak signal to noise ratio( PSNR) and structural similarity index( SSIM) have been improved. It well preserved edge details of the CT image.
出处 《信号处理》 CSCD 北大核心 2015年第10期1354-1360,共7页 Journal of Signal Processing
基金 中国博士后科学基金(2013M530873) 天津市应用基础与前沿技术研究计划(13JCYBJC15600)资助
关键词 计算机断层图像去噪 模糊神经网络 像素分类 小波稀疏表示 computed tomography image denoising fuzzy neural network pixel classification wavelet sparse representation
  • 相关文献

参考文献13

  • 1张元科,张军英,卢虹冰.基于EM算法的低剂量CT图像去噪[J].电子学报,2012,40(1):27-34. 被引量:6
  • 2Ha Sungsoo, MueUer Kiaus. Low dose CT image restora- tion using a database of image patches [ J ]. Physics in Medicine and Biology,2015,60(2) :869-882.
  • 3Mitsuru Ikeda, Reiko Makino, Kuniharu Imai. A new eval- uation method for image noise reduction and usefulness of the spatially adaptive wavelet thresholding method for CT images[J]. Australasian Physical & Engineering Sciences in Medicine,2012,35 (4) :475-483.
  • 4卢娜,肖志怀,Malik O.P..信号幅值跳变小波降噪方法研究[J].信号处理,2014,30(4):443-449. 被引量:4
  • 5You Su Jeong, Cho Nam Ik. An adaptive bandwidth nonlo- cal means image denoising in wavelet domain. Eurasip Journal on Image and Video Processing,2013,60:1-22.
  • 6Jain Paras, Tyagi, Vipin. LAPB: Locally adaptive patch- based wavelet domain edge-preserving image denoising. Information Sciences ,2015,294 : 164-181.
  • 7Ricardo Dutra da Silva, Rodrigo Minetto, William Robson Schwartz,et al. Adaptive edge-preserving image denoising using wavelet transforms. Pattern Analysis and Applica- tions,2013,16(4) :567-580.
  • 8Chiang W C, Lin H H, Huang C S, et al. The cluster as- sessment of facial attractiveness using fuzzy neural net- work classifier based on 3D Moir~ features [ J ]. Pattern Recognition ,2014,47 ( 3 ) : 1249-1260.
  • 9Jawarkar N P. Emotion Recognition using Prosody Fea- tures and a Fuzzy Min-Max Neural Classifier [ J ]. Iete Technical Review,2014,24(5 ) :369-373.
  • 10Davtalab R, Dezfoulian M H, Mansoorizadeh M. Multi- Level Fuzzy Min-Max Neural Network Classifier [ J ].IEEE Transactions on Neural Networks & Learning Sys- tems ,2014,25 (3) :470-482.

二级参考文献57

  • 1江善和,李强.基于模糊分类的模糊神经网络辨识方法及应用[J].控制工程,2005,12(3):266-269. 被引量:9
  • 2刘卫华,水鹏朗.多个小波基的联合图像去噪方法[J].系统工程与电子技术,2005,27(9):1511-1514. 被引量:13
  • 3曹学光,肖志云,汪雪林,彭思龙.复小波域HMT模型图像复原[J].光电子.激光,2005,16(12):1487-1491. 被引量:5
  • 4段瑞玲,李玉和,李庆祥,贾惠波.非线性阈值自调整小波图像去噪方法研究[J].光电子.激光,2006,17(7):871-874. 被引量:20
  • 5Besag J. On the statistical analysis of dirty pictures (with dis- cussion) [J]. Journal of the Royal Statistical Society Series B, 1984,48(3) :259 - 302.
  • 6Patrick Perez. Markov random fields and images [J].CWI Quarterly, 1998,11 (4) :413 - 437.
  • 7Sauer K, Bouman C. A local update strategy for iterative re- comtruction from projections[J].IEEE Transaction on Signal Processing, 1993,41 (2) : 534 - 548.
  • 8Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the E-M algorithm[ J] .Journal of the Royal Statistical Society Series B, 1977,39( 1 ) : 1 - 38.
  • 9Linton O W, Fred A, Mettler F A. Natiotml conference on dose reduction in CT, with an emphasis on pediatric patients [J]. American Journal of Roentgenology, 2003,181 (2) : 321 - 329.
  • 10Yazdi M, Beaulieu L. Artifacts in spiral X-ray CT scanners. Problems and solutions [J].International Journal of Biological and Medical Sciences, 2009,4(3) : 135 - 139.

共引文献24

同被引文献31

  • 1微云影像.定义"微生活"里的医疗影像——以最快的HTML5 Viewer 推动医疗影像互联网化[J].中国信息界-e医疗,2015(8).
  • 2A.Kaur,R.Kaur Sidh.Edge Preservation of Enhanced FuzzyMedian Mean Filter Using Decision Based MedianFilter.International Journal on Soft Computing (IJSC),2016,7(1).
  • 3X.Zhang,Y. Xiong.Impulse Noise Removal Using DirectionalDifference Based Noise Detector and Adaptive WeightedMean Filter.IEEE Signal Processing Letters,2009,16(4).
  • 4R.R. Varade,M.R.Dhotre and A.B. Pahurkar. A Survey on VariousMedian Filtering Techniques for Removal of Impulse Noise fromDigital Images. International Journal of Advanced Research inComputer Engineering &Technology,2013,2(2).
  • 5A.Kaur,R.Malhotra,R.Kaur.Performance evaluation of non-iterativeadaptive median filter.IEEE International Advance ComputingConference(IACC),2015.
  • 6N.Meghanathan,D.Nagamalai,N. ChakiA New.HybridApproach for Denoising Medical Images.Advances inComputing and Information Technology,2013(177).
  • 7Mark Nadeski.加速医疗影像的发展[J].电子技术应用,2009,35(9):9-10. 被引量:1
  • 8王甜甜,余晓锷.基于小波分析的CT图像噪声类型识别[J].CT理论与应用研究(中英文),2011,20(2):183-190. 被引量:4
  • 9张元科,张军英,卢虹冰.基于EM算法的低剂量CT图像去噪[J].电子学报,2012,40(1):27-34. 被引量:6
  • 10康晓东,王昊,郭宏,郭军.基于曲线波和稀疏表达的卡通—纹理模型[J].计算机应用,2012,32(10):2786-2789. 被引量:2

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部