期刊文献+

一种应用于故障诊断中的高效推理算法 被引量:6

An effective inference algorithm for fault diagnosis
原文传递
导出
摘要 针对经典联合树推理算法的信息传播共享和推理时间等问题,提出一种高效联合树推理算法.该算法基于获得的证据信息和查询节点对原始的网络结构化简,然后在化简后的网络结构上进行联合树推理.在信息传递过程中,该算法可以实现不同证据下的信息共享.经仿真验证,高效联合树算法能够在保证准确率的同时,以更短的时间作出诊断推理.基于现场收集的数据,建立水泥回转窑故障诊断系统模型并应用改进的算法实现了精准且快的故障诊断. Aiming at information propagation shared, inference time and other issues in classic junction tree inference algorithm, an effective junction tree algorithm is presented. Based on evidence information obtained and query nodes,the original structure of a Bayesian network is simplified, and then the junction tree algorithm is used for inference on the simplified structure. During the information propagation, the effective junction tree algorithm can achieve information shared between different evidence variables. The result of simulations shows that the improved algorithm can guarantee high precision at the same time, and do the diagnosis and reasoning in a short period of time. Based on data collected in the field,a fault diagnosis model is built for the cement rotary kiln, and the effective junction tree algorithm is applied to the fault diagnosis of cement rotary, achieving a faster and accurate fault diagnosis.
出处 《控制与决策》 EI CSCD 北大核心 2015年第11期2033-2040,共8页 Control and Decision
关键词 故障诊断 高效联合树算法 信息共享 贝叶斯网络 fault diagnosis effective junction tree algorithm information shared Bayesian network
  • 相关文献

参考文献15

二级参考文献108

  • 1张聪,沈一栋,程克非.一种用于信度网推理的高效三角化算法[J].计算机科学,2005,32(6):114-117. 被引量:1
  • 2徐玉秀,钟建军,闻邦椿.旋转机械动态特性的分形特征及故障诊断[J].机械工程学报,2005,41(12):186-189. 被引量:26
  • 3林东豪.用基于案例的推理技术建立专家系统[J].计算机与现代化,1996(3):35-37. 被引量:5
  • 4Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178.
  • 5Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219.
  • 6Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131.
  • 7Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328.
  • 8Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905.
  • 9Shachter R. Evidence absorption and propagation through evidence reversals [J]. Uncertainty in Artificial Intelligence, 1990(5): 173 - 190.
  • 10Adrian Y W C, Boutilier C. Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks[C].Proceedings of the Thirteenth ConJerence on Uncertainty in AI (UAI-97), 1997.

共引文献136

同被引文献32

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部