摘要
针对攀钢200 t钢包,结合物理模拟与数值模拟,研究了一定底吹氩流量和时间条件下钢水流动行为与夹杂物去除率的关系.结果表明,夹杂物去除率受气泡、旋涡和液面速度影响.当吹氩流量从4 Nm3/h增加到5 Nm3/h时,气泡尺寸增大,夹杂物去除率降低;当从5 Nm3/h增加到12 Nm3/h时,气泡数增加,搅拌能增大,夹杂物去除率升高;但超过12 Nm3/h后,受旋涡影响,液面速度增大引起回流惯性力增加,夹杂物去除率反而降低.合理的吹氩流量为9~12 Nm3/h,吹氩时间为8~10 min.该条件下钢水经吹氩去夹杂物后,钢中全氧低于25×10^-6(ω).
By using both physical simulation and numerical simulation, the effect of flow behavior on the inclusion removal rate in a 200 t ladle in Pan Steels under certain argon blowing flow rate and blowing time was examined. The results show that the inclusion removal rate is affected by floating bubbles, vortex flow and free surface velocity in the ladle. In the argon flow rate range of 4-5 Nm3/h, the increase of the flow rate causes the decrease of inclusion removal rate. However, in the flow rate range of 5-12 Nm3/h, the increase of the flow rate promotes to increase the inclusion removal rate since the stirring energy is strengthened. Once the flow rate exceeds 12 Nm3/h, the inclusion removal rate drops again because the flow pattern in the ladle is affected by the back flow and vortex flow pattern. So the optimum argon flow rate range for the ladle is 9-12 Nm3/h, and the ideal blowing time 8-10 min. With the optimum blowing flow rate and blowing time, the total oxygen content in final steel can be controlled below 25×10^-6(ω).
出处
《过程工程学报》
CAS
CSCD
北大核心
2015年第5期744-750,共7页
The Chinese Journal of Process Engineering
关键词
钢包
底吹氩
夹杂物
流动
模拟
ladle
bottom argon blowing
inclusion
flow
simulation