期刊文献+

头盔显示器伺服系统动平台参数辨识方法

Parameter identification method of motion platform of helmet mounted display servo system
原文传递
导出
摘要 分析了头盔显示器伺服系统动平台参数的不确定性与时变性,推导了连续-离散扩展卡尔曼滤波(CDEKF)与连续-离散平方根无味卡尔曼滤波(CDSR-UKF)的辨识过程,结合头盔显示器伺服系统的动力学模型建立了系统动平台参数的辨识模型,并通过仿真试验对比分析了CDEKF和CDSRUKF的辨识效果。设计了动平台参数的突变试验过程,通过试验对CDSR-UKF的实用性进行了检验。仿真结果表明:CDEKF与CDSR-UKF的标准误差比值范围为1.9~6.3,收敛时间比值范围为1.0~27.7,均方根误差的比值范围为1.4~11.0,后者的计算精度、稳定性和收敛速度均要优于前者,且后者的平均收敛时间约为0.002s,具有较好的在线辨识性能;CDSR-UKF的辨识误差小于10%,对大幅度突变和一般幅度突变参数的辨识收敛时间分别约为0.30s和0.04s,能较好地跟踪参数的变化过程,可满足正常使用情况下的头盔显示器伺服系统动平台参数辨识要求。 The nondeterminacies and time-varying characteristics of parameters for motion platform of helmet mounted display servo system(HMDSS)were analyzed,the identification processes of continuous-discrete extended Kalman filter(CDEKF) and continuous-discrete square-root unscented Kalman filter(CDSR-UKF)were derived,the parameter identification model of motion platform of HMDSS was presented based on the system dynamics model,and the identification effects of CDEKF and CDSR-UKF were compared by simulation.The mutation experiment of parameters for motion platform was designed and implemented to verify the practicability of CDSR-UKF.Simulation result indicates that the standard error ratios,convergence time ratios and root mean square error ratios of CDEKF to CDSR-UKF are 1.9-6.3,1.0-27.7and 1.4-11.0,which means that CDSR-UKF has higher identification precision,stability and convergence velocity than CDEKF.The average convergence time of CDSR-UKF is about 0.002 s,so CDSRUKF has better capacity of real-time identification.The online estimation error of CDSR-UKF is less than 10%,and the convergence times against large parameter mutation and normal parameter mutation are about 0.30 sand 0.04 srespectively,so CDSR-UKF can well trace changingprocesses of identification parameters and satisfy parameter identification requirements of motion platform of HMDSS in normal usage environment.5tabs,30 figs,26refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2015年第5期72-84,共13页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51205195) 江苏省自然科学基金项目(BK20130981) 南京林业大学高学历人才基金项目(GXL201316)
关键词 头盔显示器伺服系统 参数辨识 扩展卡尔曼滤波 无味卡尔曼滤波 连续-离散混合系统 helmet mounted display servo system parameter identification EKF UKF continuous-discrete hybrid system
  • 相关文献

参考文献26

  • 1李鹏,顾宏斌,吴东苏.基于头部运动要求的六自由度头盔伺服系统尺寸优化设计及其方法[J].航空学报,2011,32(4):739-750. 被引量:6
  • 2李鹏,顾宏斌,吴东苏,刘晖.头盔伺服系统的主动柔顺控制[J].航空学报,2012,33(5):928-939. 被引量:3
  • 3WU Dong-su, GU Hong-bin, LI Peng. Comparative study on dynamic identification of parallel motion platform for a novel flight simulator[C]//IEEE. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. New York: IEEE, 2009: 2232-2237.
  • 4DENG Kun, LI Kai-jun, XIA Qun-sheng. Application of unscented Kalman filter for the state estimation of antiqock braking system[C]//IEEE. IEEE International Conference on Vehicular Electronics and Safety, 2006. New York: IEEE, 2006: 130-133.
  • 5ARAKI N, OKADA M, KONISHI Y. Parameter identification and swing-up control of an Aerobot system[C]//IEEE. IEEE International Conference on Industrial Technology, 2005. New Yorkz IEEE, 2005 1040-1045.
  • 6TORKAMANI S, BUTCHER E A. Optimal estimation of parameters and states in stochastic time-varying systems with time delay[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(8) . 2188-2201.
  • 7S)iKK.A S. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9). 1631-1641.
  • 8CARLSSON J, NORDHEIM C. A parameter estimation method for continuous time dynamical systems based on the unscented Kalman filter and maximum likelihood[D], GOteborg: Chalmers University of Technology, 2011.
  • 9毕军,张家玮,张栋,程勇.电动汽车行驶里程与电池SOC相关性分析与建模[J].交通运输系统工程与信息,2015,15(1):49-54. 被引量:24
  • 10周浩天,艾勇,单欣,代永红.自由空间光通信中精跟踪系统的辨识(英文)[J].红外与激光工程,2015,44(2):736-741. 被引量:3

二级参考文献183

共引文献347

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部