期刊文献+

基于K均值聚类算法的雾天识别方法研究 被引量:11

Research on method of foggy weather recognition based on K-means clustering algorithm
下载PDF
导出
摘要 为实现视频监控设备对雾天天气现象的自动识别,提出了基于K均值聚类算法的雾天天气现象自动识别方法。该方法通过分析雾天天气现象对视频图像采集的影响,提取图像饱和度的均值、方差为特征参数,并利用K均值聚类算法对训练图像进行分类,得到不同图像类别的聚类中心,测试阶段计算不同图像与聚类中心的相异度即可完成分类。实验结果表明,该方法简洁高效,易于实现对大规模图像数据的处理,并能实现图像分类后类别的标注,对雾天的识别率高于90%。 To realize the foggy weather automatic recognition with video surveillance equipment, a method of foggy weather automatic recognition based on K-means clustering algorithm is put forward, in which the influence of foggy weather on video image acquisition is analyzed, and the mean value of the image saturability and variance are extracted as the characteristic pa- rameters. The training images are classified by using K-means clustering algorithm to obtain the clustering center of the different image classification. In the test stage, the classification can be completed by calculating the dissimilarity of different images and clustering centers. The experimental results show this method is simple and efficient, and easy to realize large-scale image data processing, and can realize the category labeling after image classification. The recognition accuracy is higher than 90%.
出处 《现代电子技术》 北大核心 2015年第22期80-83,共4页 Modern Electronics Technique
基金 国家自然科学基金(61250006 61002052 61471412)
关键词 雾天 自动识别 K均值聚类算法 图像饱和度 foggy weather automatic recognition K-means clustering algorithm image saturability
  • 相关文献

参考文献12

二级参考文献64

  • 1刘锦锋,黄峰.一种基于输运方程的大气退化图像复原方法[J].光散射学报,2004,16(4):364-369. 被引量:3
  • 2顾大权,范茵,许屏,龚琳.建立天空场景的模拟算法[J].气象科技,2007,35(2):292-294. 被引量:8
  • 3仇盛柏,陈京华.我国典型地区不同积分时间降雨率的换算公式[J].电波科学学报,1997,12(1):112-117. 被引量:15
  • 4Jain A K, Dubes R C. Algorithms for clustering data [ M]. Englewood Cliffs: Prentice-Hall, 1988 : 1-334.
  • 5Huang Z. Extensions to the K-means algorithm for clustering large data sets with categorical values [J]. Data Ming and Knowledge Discovery, 1998, 2 (3): 283-304.
  • 6Maulik U, Bandyopadhyay S. Genetic algorithm based clustering technique[J]. Pattern Recognition, 2000, 33 (9): 1 455-1 465.
  • 7Selim S Z, Al-Sultan K S. A simulated annealing algorithm for the clustering[J]. Pattern Recognition, 1991, 24 (10):1 003-1 008.
  • 8Likas A, Vlassis M, Verbeek J. The global K-means clustering algorithm[J]. Pattern Recognition, 2003, 36 (2) : 451-461.
  • 9Park H S, Jun C H. A simple and fast algorithm for K- medoids clustering [ J ]. Expert Systems with Applications, 2009, 36 (2): 3 336-3 341.
  • 10NARASIMHAM S G, NAYAR S K. Contrast restoration of weather degraded images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6) : 713 -724.

共引文献146

同被引文献91

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部