期刊文献+

高分一号卫星4种融合方法评价 被引量:46

Evaluation Study of Four Fusion Methods of GF-1 PAN and Multi-spectral Images
原文传递
导出
摘要 以国产高分辨率卫星高分一号作为数据源,应用Pansharp融合、HPF融合、Gram-Schmidt融合和SFIM融合4种方法对高分一号卫星2m全色及8m多光谱数据进行了融合试验,并对融合结果的空间信息融入度和光谱保真度进行了评价。选取标准差、熵及联合熵、平均梯度、相对偏差4种客观评价指标对融合结果进行了计算与分析。研究结果表明:对于高分一号卫星,4种方法均显著提高了影像的空间分辨率,同时较好地保留了影像的光谱信息,提高了影像的利用率。其中Pansharp融合综合表现最好,HPF方法边界最为清晰,SFIM方法的光谱保真度最高,GramSchmidt融合在近红外波段效果最好。根据不同的研究目的,使用适宜的融合方法及参数,可以使高分一号卫星影像更好地为生产及科研工作服务。 The improve fusion algorithms of Pansharp,HPF,Gram-Schmid and SFIM were studied in this paper based on the pan and multi-spectral images of GF-1in Beijing Capital International Airport and the area around.We evaluated the gains of spatial information and the fidelity of spectral information using the indicators of the standard deviation,the entropy and joint entropy,the mean grads and the relative deviation.The results showed that all of the four evaluation indicators can improve the spatial information and keep the spectral information of images as well for GF-1images.The utilization of the images was improved.The comprehensive effect of Pansharp was the best.The method of HPF obtained the clearest boundaries.The result had the highest fidelity of spectral information which was calculated using the method of SFIM.Gram-Schmidt represented the best in the near-infrared band fusion.The study results indicates that GF-1images will serve the production and science research better if we use different fusion algorithms and parameters according to different study purposes.
出处 《遥感技术与应用》 CSCD 北大核心 2015年第5期980-986,共7页 Remote Sensing Technology and Application
基金 高分重大科技专项"环境保护遥感动态监测信息服务系统" "高分生态环境遥感监测关键技术研究 系统开发与应用示范"(05-Y30B03-9001-13/15-10) 青海省科学技术厅科技基础条件平台建设计划 青海省可可西里国家级自然保护区"天地一体化"综合监测平台研发项目(2013-T-Y28)
关键词 高分一号(GF-1) 融合 Pansharp GRAM-SCHMIDT HPF SFIM GF-1 Image fusion Pansharp Gram-Schmidt HPF SFIM
  • 相关文献

参考文献17

  • 1Liu Y,Liu S P,Wang Z F. A General Framework for Image Fusion based on Multi scale Transform and Sparse Represen- tation[J ]. Information Fusion, 2015,24 : 147-164.
  • 2He W J, Feng W Y, Peng Y Y, et al. Multi-level Image Fusion and Enhancement for Target Detection[J]. Optik, 2015, 126 (11 12) :1203-1208.
  • 3Harris J R, Murray R. IHS Transform for the Integration of Radar Imagery with other Remotely Sensed DataJ]. Photo- grammetric Engineering and Remote Sensing, 1990,56 (12): 1631-1641.
  • 4Ehlers M. Multi-sensor Image Sensing[J]. ISPRS Journal of Sensing, 1991,46( 1)119-30.
  • 5Fusion Techniques in Remote Photogrammetry and Remote Zhou J,Civeo D,Silander J. A Wavelet Transform Method to Merge Landsat TM and SPOT Panchromatic Data[J]. Inter- national Journal of Remote Sensing, 1998,19 (4) : 743-757.
  • 6Zhang Y. A New Automatic Approach for Effectively Fusing Landsat 7 as Well as IKONOS lmages[C]//International Ge- oscience and Remote Sensing Symposium (IGARSS),2002.
  • 7Jiang D,Zhuang D F,Huang Y H,et al. Advances in Multi- sensor Data Fusion: Algorithms and Applications [J]. Sen- sors, 2009,9 (10) : 7771-7784.
  • 8Liu J. Smoothing Filter-based Intensity Modulation: A Spee-tral Preserve Image Fusion Technique for Improving Spatial Details[J]. International Journal of Remote Sensing, 2000,21 (18) :3461-3472.
  • 9Ha W, Gowda P H, Howell T A. A Review of Potential Image Fusion Methods for Remote Sensing-based Irrigation Manage- ment : Part II[J]. Irrigation Science, 2013,31 (4) : 851-869.
  • 10Patil R, Ansari V. Image Fusion Techniques and Their Per formance Evaluation: A Review[J]. International Journal of Global Technology Initiatives, 2014,3 ( 1 ) : B143-B149.

二级参考文献46

共引文献64

同被引文献444

引证文献46

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部