期刊文献+

海洛因成瘾者大脑功能网络特性的功能MRI研究 被引量:2

Brain Network Characteristics in Heroin Addicts: A Resting-state Functional MRI Study
下载PDF
导出
摘要 目的海洛因成瘾是一种慢性、复发性功能脑疾病,患者存在特定脑区的功能变化,但网络特征尚不明确。本文探讨海洛因成瘾者(HA)大脑静息态功能网络特征,从脑网络角度探索海洛因成瘾的神经影像学机制。资料与方法采用GE 3.0T MRI仪对30例HA患者(HA组)与29例健康对照者(对照组)进行静息态扫描。运用图论理论构建脑网络,计算并比较两组小世界特性及节点度,分析差异节点度与吸食海洛因总剂量的相关性。结果与对照组相比,HA组小世界特性(γ与λ)改变差异有统计学意义(P<0.05,错误发现率校正);眶额回度值升高,枕叶等脑区度值降低(P<0.05,错误发现率校正)。未发现HA组脑网络节点度与海洛因吸食总剂量存在相关性。结论 HA患者脑网络拓扑特性发生改变,更趋向于随机网络;对毒品的动机驱动增强以及视觉空间注意力受损,为进一步揭示成瘾的神经机制提供了思路。 Purpose Heroin addiction is a chronic and recurrent functional brain disease, there are some functional changes in specific brain regions, but the network character remains unclear. The aim of this paper is to explore the network character of brain restingstate functional network in heroin addicts, to identify the potential neuromechanism of heroin addiction from the perspective of brain network. Materials and Methods Thirty heroin addicts(HA group) and twenty-nine healthy controls(control group) underwent resting-state functional MRI scanning using GE 3.0T MRI scanner. The brain functional networks were constructed based on graph theory, the small-world properties and node properties were calculated and compared between the two groups, the correlation between the total dosage of heroin and node degree was analyzed. Results Compared with control group, the small world characteristics of HA group was altered with statistically significant difference(P〈0.05, corrected by false discovery rate); the node degrees in orbit frontal regions increased, while those in occipital brain regions decreased(P〈0.05, corrected by false discovery rate). No correlation was found in HA group between node degree and the total dosage of heroin. Conclusion These results suggest that topology of functional brain networks were altered in heroin addicts which tends to random networks; increased motivational driving to the salience of drug and decreased visuospatial attention in heroin addicts may provide a strategy for identifying the neuromechanism of heroin addiction.
出处 《中国医学影像学杂志》 CSCD 北大核心 2015年第10期730-734,共5页 Chinese Journal of Medical Imaging
基金 国家自然科学基金项目(81201081)
关键词 海洛因依赖 磁共振成像 静息态 功能网络 Heroin dependence Magnetic resonance imaging Resting state Function network
  • 相关文献

参考文献19

  • 1Fischer B,Oviedo-Joekes E,Blanken P,et al.Heroin-assisted treatment(HAT)a decade later:a brief update on science and politics.J Urban Health,2007,84(4):552-562.
  • 2Sporns O,Honey CJ.Small worlds inside big brains.Proc Natl Acad Sci U S A,2006,103(51):19219-19220.
  • 3Jiang G,Wen X,Qiu Y,et al.Disrupted topological organization in whole-brain functional networks of heroindependent individuals:a resting-state FMRI study.PLo S One,2013,8(12):e82715.
  • 4Yuan K,Qin W,Liu J,et al.Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals.Neurosci Lett,2010,477(1):37-42.
  • 5Wang Y,Wang H,Li W,et al.Reduced responses to heroincue-induced craving in the dorsal striatum:effects of long-term methadone maintenance treatment.Neurosci Lett,2014,581:120-124.
  • 6He Y,Wang J,Wang L,et al.Uncovering intrinsic modular organization of spontaneous brain activity in humans.PLo S One,2009,4(4):e5226.
  • 7Liu Y,Liang M,Zhou Y,et al.Disrupted small-world networks in schizophrenia.Brain,2008,131(Pt 4):945-961.
  • 8Tononi G,Edelman GM,Sporns O.Complexity and coherency:integrating information in the brain.Trends Cogn Sci,1998,2(12):474-484.
  • 9Ferri R,Rundo F,Bruni O,et al.Small-world network organization of functional connectivity of EEG slow-wave activity during sleep.Clin Neurophysiol,2007,118(2):449-456.
  • 10张方,张剑戈,左传涛,郭万华,王成.基于葡萄糖代谢的大脑功能网络的小世界特性研究[J].中国医疗器械杂志,2011,35(3):164-168. 被引量:4

二级参考文献61

  • 1Bullmore E,Sporns O.Complex brain networks:graph theoretical analysis of structural and functional systems[J].Nature Review Neuroscience,2009,10 (3):186-198.
  • 2Watts DJ,Strogatz SH.Collective dynamics of 'small-world' networks[J].Nature,1998,393 (6684):440-442.
  • 3Stephan KE,Higetagcc,Burns GA,et al.Computational analysis of functional connectivity between areas of primate cerebral cortex[J].Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2000,355 (1393):111-126.
  • 4He Y,Chen ZJ,Evans A C.Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J].Cerebral Cortex,2007,17 (10):2407-2419.
  • 5Salvador R,Suckling J,coleman MR,et al.Neurophysiological architecture of functional magnetic resonance images of human brain[J].Cerebral Cortex,2005,15 (9):1332-1342.
  • 6Achard S,Bullmore E.Efficiency and cost of economical brain functional networks.Plos Computational Biology[J] ,2007,3 (2):174-183.
  • 7Fox M D,Raichle M.E.Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J].Nat Rev Neurosci,2007,8 (9):700-711.
  • 8Tzourio-Mazoyer N,Landean B,Papathanssion D,et al.Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J].Neuroimage,2002,15 (l):273-289.
  • 9Friston KJ,Frith CD,Fletcher P,et al.Functional topography:multidimensional scaling and functional connectivity in the brain[J].Cereb Cortex,1996,6 (2):156-164.
  • 10Zhang Jiange,Zhang Fang,Da Xiao,et al.The method based on functional connectivity for the analysis of age effects on hippocampus[C].The 3rd International Conference on Bioinformatics and Biomedical Engineering(ICBBE'09)Jun,2009.

共引文献31

同被引文献12

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部