期刊文献+

地理社交网络位置推荐 被引量:3

Location recommendation on location-based social networks
下载PDF
导出
摘要 地理社交网络将地理位置信息融合进传统社交网络,将人们的现实生活和虚拟世界的生活连接在一起。作为地理社交网络的一个重要应用,位置推荐可以向人们推荐其可能感兴趣的位置,为人们的出行提供参考,极大地便利了人们的生活。在此背景下,论文研究了地理社交网络位置推荐的基本概念,分析了位置推荐常用的方法,描述了典型的数据集及推荐效果的评估方法,指出了位置推荐面临的主要问题,并展望了未来可能的研究方向,为相关领域的研究提供参考。 Location-based social networks, which add geo-information into traditional social networks, link people' s virtual and real world lives. As an important application of location-based social networks, location recommendation can recommend places that people may be interested in, provide choices for people' s out-going and make people' s lives much more convenient. Against this background, the relevant concepts of location recommendation, the methods it usually uses, data sets it deals with, evaluation methods for recommendation effectiveness and the problems it faces were delved and the future possible research directions were forecasted, hoping to provide more useful reference for researches in relevant fields.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第5期1-8,共8页 Journal of National University of Defense Technology
基金 高性能GIS关键技术与软件系统(2015AA123901)
关键词 地理社交网络 位置推荐 协同过滤 数据稀疏性 冷启动 location-based social networks location recommendation collaborative filtering data sparsity cold start
  • 相关文献

参考文献42

  • 1Gao H J. Personalized POI recommendation on location-based social networks [ D ]. USA: Arizona State University, 2014.
  • 2Bao J, Zheng Y, Wilkie D, et al. Recommendations in location-based social networks : a survey [ J ]. Geolnformatica, 2015, 19(3) :525 -565.
  • 3Zhang J D, Chow C Y, Zheng Y. ORec:an opinion-based point-of-interest recommendation [ C ]// Proceedings of the 24th ACM International Conference on Information and Knowledgement, ACM, 2015:1641 - 1650.
  • 4Gao H, Tang J, Hu X, et al. Content-aware point of interest recommendation on location-based social networks [ C ]// Proceedings of the 29th Conference on Artificial Intelligence, AAAI, 2015 : 1721 - 1727.
  • 5Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks [ C J// Proceedings of the 12th ACM International Conference on Ubiquitous Computing, ACM, 2010 : 119 - 128.
  • 6Gionis A, Lappas T, Pelechrinis K, et al. Customized tour recommendations in urban areas [ C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, ACM, 2014:313-322.
  • 7Cho E, Myers S A, Leskovec J. Friendship and mobility: user movement in location-based social networks [ C ]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011 : 1082 - 1090.
  • 8Zheng Y, Zhou X F. Computing with spatial trajectories[ M]. USA: Springer, 2011.
  • 9Levandoski J, Sarwat M, Eldawy A, t al. LARS : a location- aware recommender system [ C ]// Proceedings of IEEE 28th International Conference on Data Engineering, 2012: 450- 461.
  • 10Mao Y, Yin P F, Lee W C, et al. Exploiting geographical influence for collaborative point-af-interest reeonnrendafion [ C ]// Proceedings of the 34th Annual ACM SIGIR Conference, ACM, 2011 : 325 -334.

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部