期刊文献+

深海天然气水合物管道水力提升规律研究 被引量:5

Research on Submarine Gas Hydrate Law in Pipe Hydraulic Lifting
原文传递
导出
摘要 针对深海天然气水合物海开采系统的管道水力提升过程中,因水合物在压力降低的情况下部分气化而产生气体,使得矿浆垂直运输从传统两相流变成了三相流的问题,建立了沿管道方向压力和分解量与海洋深度的函数关系,求出了分解临界面的深度,以及与气体体积和密度等相关的参数;分析了管径、颗粒粒径、浆体流速、输送体积浓度和矿物密度5个参数对分解临界面和产生气体质量的影响,从而总结出沿管道的水力损失越小,临界分解面越深,分解出来的气体越多的规律,并选取了管径为300mm,颗粒粒径为10mm、浆体流速为1.65m/s、输送体积浓度为30%和矿物密度为1190kg/m3的最佳运输条件。 For deep-sea gas hydrate mining in the process of pipe hydraulic lifting system,some hydrates gasify as pressure decay,which makes the vertical lifting problem from the traditional two-phase flow into the three-phase flow.To establish function relationship between pressure and decomposition amount with sea depth along the pipe,the decomposition critical plane and some related parameters such as volume and density of gas were calculated.The effect of pipe diameter,particle diameter,slurry flow velocity,transportation volume fraction and mineral density on the decomposition critical plane and generating gas mass were analyzed,thus the law can be concluded that less hydraulic loss is,deeper the decomposition critical plane is,lager the gas decomposition amount is.And the optimal transportation condition were selected that pipe diameter is 300 mm,particle diameter is 10 mm,slurry flow velocity is 1.65m/s,volume fraction is 30% and mineral density is 1190kg/m^3.
出处 《海洋湖沼通报》 CSCD 北大核心 2015年第2期164-170,共7页 Transactions of Oceanology and Limnology
基金 国家自然科学基金项目(51375498) 博士点基金资助课题(20130162110004)资助
关键词 天然气水合物 管道水力提升 三相流 气体分解质量 gas hydrate pipe hydraulic lifting three-phase flow mass of decomposed gas
  • 相关文献

参考文献9

  • 1Yuri F. Makogon, Natural gas hydrates-a promising source of energy [J].Journal of Natural Gas Science and Engineering, 2010, 2 (1) : 49-59.
  • 2Jerome Rajnauth, and Maria Barrufet, Monetizing gas: focusing on developments in gas hydrate as a mode of transportation [J]. En- ergy Science and Technology, 2012, 4(2): 61-68.
  • 3屈科辉.基于固态开采的海底天然气水合物水力输送研究[D].中南大学,2010:4-16.
  • 4Washino, K. , H. S. Tan, A. D. Salman, etal. , Direct numerical simulation of solid-liquid-gas three-phase flow: Fluid-solid inter- aetioo.[J].Powder Technology, 2011, 206(1): 161-169.
  • 5Saw, V. K. , M. Gudata, G. Udayabhanu, et al. , Kinetics of methane hydrate formation and its dissociation in presence of non-ionic surfactant Tergitol [J]. Journal of Unconventional Oil and Gas Resources, 2013,1:54-59.
  • 6Kim, H. C. , P. R. Bishinoi, R. A. Heidemann, and S. S. H. Rizvi, Kinetics of methane hydrate dissociation [J]. Chemical Engi- neering Science, 1987, 42(7): 1645-1653.
  • 7夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J].泥沙研究,2002,27(2):23-28. 被引量:24
  • 8王秀娟,吴时国,郭璇,徐宁.南海陆坡天然气水合物饱和度估计[J].海洋地质与第四纪地质,2005,25(3):89-95. 被引量:16
  • 9华彤文,陈景祖.普通化学原理(第3版)[M].北京:北京大学出版社,2008.

二级参考文献37

  • 1Wasp E J.固体物料的管道输送[M].黄河水利委员会译,北京:水利工业出版社,1980.
  • 2Engelmann,H.E.Vertical hydraulic lifting of large-size particle-a contribution to marine mining[C],The Proceeding of Offshore Technology Conference,Huston,1978,731-740.
  • 3Cloete FLD,Miuer AI,Streat and M.Dense phase flow of solids-water mixtrues through vertical pipes [J],TRANGS,INSTN,CHEM,ENGRS,1967,Vol.45,392-400.
  • 4Newitt,D.M.,Richardson,J.F and Gliadon,B.J.Hydraulic conveying of solids in vertical pipes [J],TRANS.INSTN.CHEM.ENGRS,1961,Vol.39,93-100.
  • 5(日)寺田进.混合液在管路中的流动[M].鞍山钢铁设计院译,1985.
  • 6Gunther,C.Slip and friction losses in deep sea hydraulic lifting of solid.The 3rd Inter.Ocean Development Conference,Vol.3,Tokyo,1975,293.
  • 7Katsura,K.Statistical Mechanics [M],Hirokawa Publishing Co.First edition,1969.(in Japanese).
  • 8Asakura,K.,Asari,T.,and Nakajima,I.Simulation of upward solid-liquid flows in a vertical pipe [J].资源の素材,1994,Vol.110,973-979.
  • 9钱宁 万兆惠.泥沙运动力学[M].北京:科学出版社,1991..
  • 10AmosNur著 许云译.双相介质中波的传播[M1[M].石油工业出版社,1986.86-100.

共引文献38

同被引文献36

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部