摘要
Let X = {X(t):t ∈ R^N} be an anisotropic random field with values in R^d.Under certain conditions on X,we establish upper and lower bounds on the hitting probabilities of X in terms of respectively Hausdorff measure and Bessel-Riesz capacity.We also obtain the Hausdorff dimension of its inverse image,and the Hausdorff and packing dimensions of its level sets.These results are applicable to non-linear solutions of stochastic heat equations driven by a white in time and spatially homogeneous Gaussian noise and anisotropic Guassian random fields.
Let X = {X(t):t ∈ R^N} be an anisotropic random field with values in R^d.Under certain conditions on X,we establish upper and lower bounds on the hitting probabilities of X in terms of respectively Hausdorff measure and Bessel-Riesz capacity.We also obtain the Hausdorff dimension of its inverse image,and the Hausdorff and packing dimensions of its level sets.These results are applicable to non-linear solutions of stochastic heat equations driven by a white in time and spatially homogeneous Gaussian noise and anisotropic Guassian random fields.
基金
Supported by National Natural Science Foundation of China(Grant No.11371321)