期刊文献+

内部爆炸加载下柱壳的环周分裂数

The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading
下载PDF
导出
摘要 基于有限长度柱壳的Gurney速度公式,以壳体平均半径估算平均应变率,同时考虑壳体剪切断裂时的断裂面长度与径向壁厚的差异,对Grady-Kipp方法进行了修正,得到柱壳剪切断裂模式下环周分裂数的完整表达式。利用修正方法分析得到的环周分裂数计算结果与实验数据分析结果符合更好。以20号低碳钢柱壳为例,对其在TNT爆炸加载下的膨胀断裂进行了三维数值模拟,得到的环周分裂数模拟结果与实验结果符合较好。 Based on the Gurney velocity formula for cylindrical shells with finite length, the average strain rate was estimated by the average radius of the shell. And by taking into account the differences between the shear fracture surface length of the shell and the radial thickness, the Grady-Kipp method was modified to give a full expression for the number of the circumferential fragments of the cylindrical shell. The number of the circumferential fragments number calculated by the modified Grady-Kipp method can better match with the experimental result than one by the Grady theory. The 20# low- carbon steel was taken as an example to numerically simulate the expansion and fracture of low-carbon steel shells under TNT explosion loading. The numbers of the circumferential fragments of the low- carbon steel shells by numerical simulation are in agreement with the experimental one.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2015年第5期763-767,共5页 Explosion and Shock Waves
关键词 爆炸力学 环周分裂数 爆炸加载 柱壳 动态断裂 低碳钢 mechanics of explosion number of circumferential fragments explosive loading cylindrical shell dynamic fracture low-carbon steel
  • 相关文献

参考文献15

  • 1Mott N F. Fragmentations of shell cases[J]. Proceedings of the Royal Society of London: Series A: Mathematicaland Physical Sciences, 1947,189(1018) :300-308.
  • 2Grady D E, Olsen M L. A statistics and energy based theory of dynamic fragmentation:JL International Journal ofImpact Engineering, 2003,29(1):293-306.
  • 3Grady D E. Fragment size distributions from the dynamic fragmentation of brittle solids[J]. International Journalof Impact Engineering, 2008,35(12):1557-1562.
  • 4Grady D E. Fragmentation of rings and shells: The legacy of N. F. Mott[M]. Springer, 2006.
  • 5Arnold W,Rottenkolber E. Fragment mass distribution of metal cased explosive charges[J], International Journalof Impact Engineering, 2008,35(12) *1393-1398.
  • 6鲁宇,周兰庭.爆炸环动态破裂分析[J].兵工学报,1991,12(1):86-90. 被引量:1
  • 7陈磊,周风华,汤铁钢.韧性金属圆环高速膨胀碎裂过程的有限元模拟[J].力学学报,2011,43(5):861-870. 被引量:17
  • 8王永刚,周风华.径向膨胀Al_2O_3陶瓷环动态拉伸破碎的实验研究[J].固体力学学报,2008,29(3):245-249. 被引量:9
  • 9Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYN user’s manual[M]. Revision14. 0, 2011.
  • 10Lambert D E,Weiderhold J. Explosively driven fragmentation experiments for continuum damage modeling[J].Journal of Pressure Vessel Technology,2012,134(3) :031209-7.

二级参考文献48

  • 1卢校军,王蓉,黄毅民,何碧,韩敦信,陈红霞,鲁斌.两种含铝炸药作功能力与JWL状态方程研究[J].含能材料,2005,13(3):144-147. 被引量:16
  • 2张崇玉,谷岩,张世文,孙学林,彭其先.爆轰波对碰驱动下金属圆管膨胀变形特性研究[J].爆炸与冲击,2005,25(3):222-226. 被引量:14
  • 3桂毓林,孙承纬,路中华,李强,张光升.一维快速拉伸下无氧铜的动态断裂与破碎[J].爆炸与冲击,2007,27(1):40-44. 被引量:6
  • 4Jonathan P Glanville, Greg Fairlie, Colin Hayhurst, et al. Numerical simulation of fragmentation using AUTODYNTM 2D & 3D in explosive ordnance safety assessment [C]// 6th PARARI International Explosive Ordnance Symposium. Canberra, Australia, 29- 31 October 2003: 2 - 8.
  • 5Interactive non-linear dynamic analysis software AUTODYNTM user manual [M]. revision 4. 3 Century Dynamics Inc. 2003.
  • 6Yang Yunbin, Qu Ming, Qian Lixin. The study on lethality simulation method for fragmentation warhead[C]// 22nd International Symposium on Ballistics, Vancouver BC Canada, 14- 18 November 2005:2-8.
  • 7Nilsson K. Effects of inertia on dynamic neck formation in tensile bars. European Journal of Mechanics A/Solids, 2001, 20(5): 713-729.
  • 8Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation, the capturing of length and time scales through cohesive models of fracture. Inter- national Journal of Fracture, 1999, 95(1-4): 279-297.
  • 9Rusinek A, Zaera R. Finite element simulation of steel ring fragmentation under radial expansion. International Jour- nal of Impact Engineering, 2007, 34(4): 799-822.
  • 10Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation -- Ⅱ. Effect of material properties, geometrical constraints and absolute size. International Journal of Fracture, 2008, 150(1-2): 3-36.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部