期刊文献+

基于BEMD的染噪混沌时间序列预测方法

Prediction of Noisy Chaotic Time Series Based on BEMD
下载PDF
导出
摘要 基于经验模态分解(EMD)方法对染噪混沌时间序列进行预测时,模态混叠会降低预测精度和最大可预测时间。针对这一问题,将复数据经验模态分解(BEMD)引入到染噪混沌时间序列的预测,在BEMD过程中以高斯白噪声分解的内禀模态函数(IMF)为基函数来驱动染噪混沌信号的分解,从而减小模态混叠对混沌预测的影响。Lorenz混沌时间序列和Henon混沌时间序列的预测实例表明,本方法相对于EMD方法在预测精度和最大可预测时间上都有一定程度的提高。 The prediction accuracy and reliable prediction time will be decreased because of mode mixing when the empirical mode decomposition(EMD) is used to predict noisy chaotic time series,a method based on bivariate empirical mode decomposition(BEMD) is proposed to tackle this problem,in which the intrinsic mode functions(IMF) of Gaussian white noise are used as the data-driven basis functions for the decomposition of noisy chaotic time series,thus the effects of mode mixing are weakened.The simulation results of Lorenz chaotic time series and Henon chaotic time series both show that this method has more performance advantages on prediction accuracy and reliable prediction time than the method based on EMD.
出处 《测控技术》 CSCD 2015年第11期44-47,51,共5页 Measurement & Control Technology
关键词 混沌预测 模态混叠 复数据经验模态分解 高斯白噪声 chaotic prediction mode mixing bivariate empirical mode decomposition Gaussian white noise
  • 相关文献

参考文献10

  • 1Meng Q F, Peng Y H. A new local linear prediction model for chaotic time series [ J ]. Physics Letters A,2007,370 (5/6) : 465 - 470.
  • 2杨永锋,任兴民,秦卫阳,吴亚锋,支希哲.基于EMD方法的混沌时间序列预测[J].物理学报,2008,57(10):6139-6144. 被引量:24
  • 3Agrafioti F, Hatzinakos D. An enhanced EMD algorithm for ECG signal proceesing[ C ]//2011 17th International Confer- ence on Digital Signal Processing. 2011:7 -12.
  • 4Wu Z H, Huang N E. Ensemble empirical mode decomposi- tion : a noise assisted data analysis method [ J] . Advances in Adaptive Data Analysis ,2009,1 ( 1 ) :1 41.
  • 5Tanaka T, Mandic D P. Complex empirical mode decomposi- tion[J]. IEEE Signal Processing Letters,2007,14(2):101 - 104.
  • 6Bin Altaf M U, Gautama T, Tanaka T, et al. Rotation invari- ant complex empirical mode decomposition [ C ]//IEEE In- ternational Conference on Acoustics, Speech and Signal Pro- cessing. 2007 : 1009 - 1012.
  • 7Rilling G, Flandrin P, Gonalves P, et al. Bivariate empirical mode decomposition [ J ]. IEEE Signal Processing Letters, 2008,14 (12) :936 - 939.
  • 8Molla M K I, Tanaka T, Rutkowski T M, et al. Separation of EOG artifacts from EEG signal using bivariate EMD[ C]/! 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 2010:562 - 565.
  • 9曲建岭,王小飞,高峰,周玉平,张翔宇.基于复数据经验模态分解的噪声辅助信号分解方法[J].物理学报,2014,63(11):1-9. 被引量:11
  • 10王小飞,曲建岭,高峰,周玉平,张翔宇.基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪[J].物理学报,2014,63(17):18-26. 被引量:6

二级参考文献47

  • 1杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-72. 被引量:78
  • 2Takens F 1981 Dynamical Systems and Turbulence (Berlin: Springer) p366
  • 3Su S F, Lin C B, Hsu Y T 2002 IEEE Transactions on Systems 32 416
  • 4Linsay P S 1991 Phys. Rev. Lett. A 153 353
  • 5Huang N E, Shen Z, Long S R 1998 Proceedings of Royal Society (London) A454 903
  • 6Wolf A, Swift J B, Swinney H L 1985 Phys. D 16 285
  • 7Fraser A M, Swinney H L 1986 Phys. Rev. A 33 1134
  • 8Cao L Y 1997 Phys. D: Nonlinear Phenomena 110 43
  • 9Datig M, Schlurmann T 2004 Ocean Engineering 31 1783
  • 10Gagarin N, Huang N E, Oskard M S, Sixbey D G, Mekemson J R 2004 Int. J. Vehicle Design 36 87

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部