期刊文献+

康复机器人的同步主动交互控制与实现 被引量:24

Synchronous Active Interaction Control and Its Implementation for a Rehabilitation Robot
下载PDF
导出
摘要 提出了一种适用于康复机器人的人机交互控制方法.结合一款具有平面并联结构的上肢康复机器人,实现了与用户(患者)运动意图同步的、柔顺的主动康复训练.在训练中,利用自适应频率振荡器,从表面肌电信号(Surface electromyography,s EMG)中获取运动模式信息,然后结合运动模式和期望的正常运动轨迹,生成与主动运动意图同步的参考训练轨迹.本文通过仿真和实际实验对所提出的方法进行了验证,振荡器可以在2~5 s内快速实现与用户主动运动意图的同步,然后利用阻抗控制器给予柔顺的辅助.通过调节阻抗参数,可以为患者的运动训练提供不同程度的辅助. This paper proposes a novel human-robot interaction control method for rehabilitation robots. Based on an upper-limb rehabilitation robot, active training is realized, which is compliant, and can synchronize with the human motion intention. During the training, the user s motion pattern information is detected by the adaptive frequency oscillator,then a synchronous reference training trajectory is generated by combining the pattern information with normal trajectory features. The implementation of this method is described at the end of this paper, where the adaptive frequency oscillator can synchronize with surface electromyography(s EMG) within 2 ~ 5 s, and an impedance controller provides compliant assistance. By simply adjusting the impedance parameters, different assistance levels can be achieved.
出处 《自动化学报》 EI CSCD 北大核心 2015年第11期1837-1846,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61175076 61225017 61421004)资助~~
关键词 康复机器人 表面肌电信号 自适应频率振荡器 阻抗控制 Rehabilitation robot surface electromyography(s EMG) adaptive frequency oscillator impedance control
  • 相关文献

参考文献29

  • 1Go A S, Mozaffarian D, Roger V L, Benjamin E J, Berry J D, Blaha M J, Dai S, Ford E S, Fox C S, Franco S, Fullerton H J, Gillespie C, Hailpern S M, Heit J A, Howard V J, Huff- man M D, Judd S E, Kissela B M, Kittner S J, Lackland D T, Lichtman J H, Lisabeth L D, Mackey R H, Magid D J, Marcus G M, Marelli A, Matchar D B, McGuire D K, Mohler E R 3rd, Moy C S, Mussolino M E, Neumar R W, Nichol G, Pandey D K, Paynter N P, Reeves M J, Sorlie P D, Stein J, Towfighi A, Turan T N, Virani S S, Wong N D, Woo D, Turner M B; American Heart Association Statistics Com- mittee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2014 update: a report from the Ameri- can heart association. Circulation, 2014, 129(3): e28-e292.
  • 2Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabili- tation, 2014, 11(1): 3-32.
  • 3胡进,侯增广,陈翼雄,张峰,王卫群.下肢康复机器人及其交互控制方法[J].自动化学报,2014,40(11):2377-2390. 被引量:108
  • 4Buerger S P, Palazzolo J J, Krebs H I, Hogan N. Rehabilita- tion robotics: adapting robot behavior to suit patient needs and abilities. In: Proceedings of the 2004 American Control Conference. Boston, USA: IEEE, 2004. 3239-3244.
  • 5Lfinenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4(1): 1.
  • 6Lo A C, Guarino P D, Richards L G, Haselkorn J If, Wit- tenberg G F, Federman D G, Ringer R J, Wagner T H, Krebs H I, Volpe B T, Bever C T Jr, Bravata D M, Duncan P W, Corn B H, Maffucci A D, Nadeau S E, Conroy S S, Powell J M, Huang G D, Peduzzi P. Robot-assisted ther- apy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 2010, 362(19): 1772-1783.
  • 7Klamroth-Marganska V, Blanco J, Campen K, Curt A, Di- etz V, Ettlin T, Felder M, Fellinghauer B, Guidali M,Soll- mar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. The Lancet Neurology, 2014, 13(2): 159-166.
  • 8Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic in- jury. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1): 20.
  • 9Hu J, Hou Z G, Zhang F, Chen Y X, Li P F. Training strate- gies for a lower limb rehabilitation robot based on impedance control. In: Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biol- ogy Society. San Diego, USA: IEEE, 2012. 6032-6035.
  • 10Wang W Q, Hou Z G, Tong L, Chen Y X, Peng L, Tan M. Dynamics modeling and identification of the human- robot interface based on a lower limb rehabilitation robot. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 6012-6017.

二级参考文献94

  • 1国家卫生和计划生育委员会脑卒中防治工程. 卫生部脑卒中筛查与防治工作介绍 [Online], available: http://www.cnstroke.com/newsinfo/news/NewsDetail.aspx ?t_id=684&cCode=00010001, July 24, 2014.
  • 2上海市卫生和计划生育委员会, 预防脑卒中 从今天开始 [Online], available: http://www.smhb.gov.cn/wsj/n422/n424/ u1ai130971.html, October 28, 2014.
  • 3第二次全国残疾人抽样调查领导小组, 中华人民共和国国家统计局. 2006年第二次全国残疾人抽样调查主要数据公报(第二号) [Online], available: http://www.cdpf.org.cn/sytj/content/2007-11/21/content_ 30316035.htm, July 24, 2014.
  • 4中华人民共和国国家统计局. 2010年第六次全国人口普查主要数据公报(第一号) [Online], available: http://www. stats.gov.cn/tjfx/jdfx/t20110428_402722253.htm, July 24, 2014.
  • 5浙江省卫生和计划生育委员会, 我国对康复服务需求将出现"井喷" [Online], available: http://www.zjwst.gov.cn/art/2011/4/1/art_2521_99294.html, October 28, 2014.
  • 6人民网. 北京:脊髓损伤发病率过高 [Online], available: http://people.com.cn/GB/paper503/10808/981785.html, July 24, 2014.
  • 7Beijing Baodahua Technology Co Ltd. PT-2-AXG smart automatic rehabilitation machine for lower limbs [Online], available: http://www.bdhkf.com/en_cp_xxy.asp?id=23, July 24, 2014.
  • 8Restorative Therapies. RT300 Leg [Online], available: http://www.restorative-therapies.com/rt300leg, July 24, 2014.
  • 9RECK-Technik GmbH & Co KG. MOTOmed [Online], available: http://www.motomed.com/en/models.html, July 24, 2014.
  • 10Sun H Y, Zhang L X, Li C S. Dynamic analysis of horizontal lower limbs rehabilitative robot. In: Proceedings of the 2009 International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009. 656-660.

共引文献130

同被引文献139

引证文献24

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部