期刊文献+

云存储网中快速访问控制机制的研究

Research on the fast access control mechanism in cloud storage network
下载PDF
导出
摘要 针对云存储系统中存储控制结点的I/O性能瓶颈的特点,提出相应的相空间调度算法,将云存储系统投影到参数相空间,将存储控制结点和数据存储结点参数的变化转化为参数相空间中点的运动,然后利用合作博弈协调算法优化访问控制模块所需时间与空间开销的问题。理论分析与试验结果表明,相空间调度算法能使云存储系统在参数相空间中获得较优的操作处理速度、较优的I/O性能。 Aiming at the cloud storage system storage control nodes of the I / O bottleneck, the cloud storage system are projected to the parameters of phase space, node parameters change parameter phase space at the midpoint of the movement, the establishment of the phase space scheduling algorithm, then using cooperative game coordination algorithm to optimise the access control module problem with the time and space overhead of. The simulation results show that the phase space scheduling algorithm can make the cloud storage system in the parameters of the phase space of the better operation and processing speed, the better IO performance.
出处 《深圳信息职业技术学院学报》 2015年第3期1-4,共4页 Journal of Shenzhen Institute of Information Technology
基金 深圳市科技项目(项目编号:JCYJ20130401095947222)
关键词 相空间 合作博弈 云存储 phase space cooperative game cloud storage
  • 相关文献

参考文献5

二级参考文献67

  • 1孙照焱,董永贵,贾惠波,冯冠平.附网存储设备用户行为的一种层次化免疫策略[J].计算机应用研究,2005,22(1):111-113. 被引量:1
  • 2DUHaifeng,GONGMaoguo,JIAOLicheng,LIURuochen.A novel algorithm of artificial immune system for high-dimensional function numerical optimization[J].Progress in Natural Science:Materials International,2005,15(5):463-471. 被引量:18
  • 3GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 4孙宏元,谢维信,杨勋,陆克中.基于并行计算熵的同构集群负载均衡算法[J].深圳大学学报(理工版),2007,24(1):64-68. 被引量:5
  • 5Liu H, Motoda H. Instance Selection and Construction for Data Mining. New York: Kluwer Academic Publishers, 2001.3-20.
  • 6Takashi F, Akio D. A Study of data reduction method with data accuracy for triangle data. In: Barolli L, ed. Proc. of the 1 lth Int'l Conf. on Parallel and Distributed Systems. Washington: IEEE Computer Society, 2005. 210-213.
  • 7Charu CA. An efficient subspace sampling fi'amework for high-dimensional data reduction, selectivity estimation, and nearest-neighbor search. IEEE Trans. on Knowledge and Data Engineering, 2004,16(10): 1247-1262.
  • 8Lynch RS, Willetl P K. A theoretical performance analysis of the Bayesian data reduction algorithm. In: Proc. of the 2005 IEEE Int'I Symposium on Systems, Man, and Cybernetics. Piscataway: IEEE Systems, Man, and Cybernetics Society, 2005. 330-335.
  • 9Tahani H, Plummer B, Hemamalini NS. A new data reduction algorithm for pattern classification. In: Proc. of the 1996 IEEE lnt'l Conf. on Acoustics, Speech and Signal Processing. Piscataway: IEEE Signal Processing Society, 1996. 3446-3449.
  • 10Cano JR, Herrera F, Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Trans. on Evolutionary Computation, 2003,7(6):561-575.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部