期刊文献+

基于干扰权限交易的认知无线电网络功率控制算法 被引量:3

Interference Right Trading-Based Power Control Algorithm of Cognitive Radio Networks
下载PDF
导出
摘要 为提高认知无线通信系统频谱利用率和系统工作公平性,最大化授权用户和认知用户的经济效益,引入基于非合作博弈的干扰权限交易机制,提出了一种基于干扰权限交易的认知无线电网络功率控制算法.该算法允许授权用户在保证最低干扰门限的基础上交易其干扰权限,并对认知用户征收干扰价格来补偿其通信质量的降低.通过价格杠杆原理,授权用户和认知用户、认知用户和认知用户对干扰价格和发射功率进行非合作博弈,并且干扰价格和发射功率收敛于纳什均衡点.仿真结果表明,文中所提算法比传统算法具有更好的系统公平性和实用性. In order to promote the fairness and spectrum efficiency of cognitive radio networks (CRNs)and to max-imize the utility of primary user (PU)and secondary users (SUs),this paper introduces a game-based non-cooper-ation trading mechanism,and proposes an interference right trading-based power control algorithm of cognitive radio networks.In the algorithm,PUs that has satisfied their own minimum interference threshold are allowed to trade their interference rights (IRs),and the interference price is imposed on SUs to earn income as the compensation for the degradation of QoS.Moreover,through the principle of price lever,the non-cooperative game among SUs as well as between PUs and SUs are performed in terms of the interference price and the transmitting power,and thus the interference price and the transmitting power eventually converge to a Nash equilibrium point.Simulation results show that the proposed algorithm is more fair and practical than the traditional one.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期34-38,46,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61302058) 国家"973"计划项目(2011CB707003) 华南理工大学中央高校基本科研业务费专项资金资助项目(2014ZZ0030)~~
关键词 认知无线电网络 干扰权限 功率控制 cognitive radio interference right power control
  • 相关文献

参考文献15

  • 1Javan M R, Sharafat A R. Distributed joint resource allo- cation in primary and cognitive wireless networks [ J ]. IEEE Transactions on Wireless Communications,2013,61 (5) :1708-1719.
  • 2Gur G,Alagoz F. Green wireless communications via cog- nitive dimension : an overview [ J]. IEEE Network, 2011, 25(2) :50-56.
  • 3Lin Peng, Jia Juncheng, Zhang Qian, et al. Cooperation among wireless service providers : opportunity, challenge, and solution [ J ]. IEEE Transactions on Wireless Com- munications,2010, 17 (4) :55-61.
  • 4Bu Shengrong, Richard F. Energy-efficient cognitive hetero- geneous networks powered by the smart grid [ C ]//Pro- ceedings of 2013 IEEE INFOCOM. Turin: IEEE, 2013 : 980-988.
  • 5Kim H J, Hong H. A memory-efficient parallel string matc- hing for intrusion detection systems [ J ] : IEEE Communi- cations Letters, 2009,13 (12) : 1004-1006 .
  • 6Pan Miao, Li Pan, Song Yang, et al. When spectrum meets elouds: optimal session based spectrum trading under spectrum uncertainty [J]. IEEE Journal on Selected Areas in Communications, 2014,32 ( 3 ) : 615- 627.
  • 7Gao Lin, Wang Xinbing, Xu Youyun, et al. Spectrum trading in cognitive radio networks:a contract-theoretic modeling approach [ J]. IEEE Journal on Selected Areas in Com- munications, 2011,29 ( 4 ) : 843-855.
  • 8Bansal G, Hossian M J, Bhargava V K. Adaptive power loading for OFDM-based cognitive radio systems [ C ] // Proceedings of IEEE Contrence on Communication. Gla- sgow : IEEE, 2007 : 5137-5142.
  • 9Lu Qianxi, Tao Peng. Utinity-based resource allocation in uplink of OFDMA-based cognitive radio networks [ J ]. International Journal of Communication Systems,2010,23 (2) :252-274.
  • 10Gunduz D, Erkip E. Opportunistic cooperation by dyna- mic resource allocation [ J ]. IEEE Transactions on Wire- less Communications, 2007,6 ( 4 ) :446-1454.

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部