摘要
It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving performance. The present technologies for helicopter vibration reduction are usually narrow in effective range or requiring additional actuators and signal transfer links, and more effective technology is desired. Helicopter blade pitch control system, which is removed of swashplate and integrated high-frequency pitch control function for active vibration reduction, is likely the suitable solution at current technical level. Several potential implementation schemes are discussed, such as blades being directly or indirectly driven by actuators mounted in rotating frame and application of different types of actuators, especially implementation schemes of electro-mechanical actuator with or without gear reducer. It is found that swashplateless blade pitch control system based on specially designed limited angle direct-drive motor (LADDM) is a more practical implementation scheme. An experimental prototype of the finally selected implementation scheme has been designed, fabricated and tested on rotor tower. The test results show considerable feasibility of the swashplateless helicopter blade pitch control system using the LADDM.
It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving performance. The present technologies for helicopter vibration reduction are usually narrow in effective range or requiring additional actuators and signal transfer links, and more effective technology is desired. Helicopter blade pitch control system, which is removed of swashplate and integrated high-frequency pitch control function for active vibration reduction, is likely the suitable solution at current technical level. Several potential implementation schemes are discussed, such as blades being directly or indirectly driven by actuators mounted in rotating frame and application of different types of actuators, especially implementation schemes of electro-mechanical actuator with or without gear reducer. It is found that swashplateless blade pitch control system based on specially designed limited angle direct-drive motor (LADDM) is a more practical implementation scheme. An experimental prototype of the finally selected implementation scheme has been designed, fabricated and tested on rotor tower. The test results show considerable feasibility of the swashplateless helicopter blade pitch control system using the LADDM.