期刊文献+

混杂随机微分方程θ方法的几乎必然指数稳定性(英文) 被引量:2

Almost sure exponential stability of θ-method for hybrid stochastic differential equations
下载PDF
导出
摘要 大部分的混杂随机微分方程很难得到解析解,因此利用数值方法研究其数值解具有重要意义.本文研究θ方法产生的数值解的几乎必然指数稳定性.在单边Lipschitz条件和线性增长条件下,首先给出方程的平凡解是几乎必然指数稳定的.然后在相同条件下,运用Chebyshev不等式和Borel-Cantelli引理,证明了对θ∈[0,1],θ方法重现平凡解的几乎必然指数稳定性.θ方法是一种比现有的Euler-Maruyama方法和向后Euler-Maruyama方法更广的方法.当θ等于1或0时,它分别退化为上述两种方法之一.本文的结论对上述两种方法同样适用.最后,数值例子和仿真说明了对不同的θ所提出方法的有效性和稳定性. It is difficult to obtain analytical solutions for most of the hybrid stochastic differential equations(SDEs),so the research on the numerical solutions by the use of numerical methods is of great significance.This paper focuses on the almost sure exponential stability of the numerical solutions produced by the θ-method.Under the one-sided Lipschitz condition and the linear growth condition,the almost sure exponential stability of the trivial solution for hybrid SDEs is first introduced.Then,by applying the Chebyshev inequality and the Borel-Cantelli lemma,we prove that the θ-method reproduces the corresponding stability of the trivial solution under the same conditions for θ ∈[0,1].The θ-method is a more general method than the existing Euler-Maruyama method as well as the backward Euler-Maruyama method.When θis equal to 1 or 0,it degenerates to one of the above two methods,respectively.The results of this paper are also applicable to these two methods.Finally,a numerical example and its simulations with different θ are given to illustrate the effectiveness and the stability of the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第9期1246-1253,共8页 Control Theory & Applications
基金 Supported by National Natural Science Foundation of China(61273126) Research Foundation for the Doctoral Program of Higher Education of China(20130172110027) Fundamental Research Funds for the Central Universities(2013ZZ0056,2015ZM073) Ph.D Start-up Fund of Natural Science Foundation of Guangdong Province(2014A030310388)
关键词 布朗运动 θ方法 马尔科夫链 几乎必然指数稳定 混杂系统 Brownian motion θ-method Markov chains almost sure exponential stability hybrid systems
  • 相关文献

参考文献23

  • 1YUAN C, MAO X. Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching [J]. Math- ematics and Computers in Simulation, 2004, 64(2): 223 - 235.
  • 2MARITON M. Jump Linear Systems in Automatic Control [M]. New York: Marcel Dekker. 1990.
  • 3MAO X, YUAN C. Stochastic Differential Equations with Markovian Switching [M]. London: Imperial College Press, 2006.
  • 4KLOEDEN P E, PLATEN E. Numerical Solution of Stochastic Dif- ferential Equations [M], Berlin: Springer-Verlag, 1992.
  • 5BURRAGEA K, BURRAGE P, MITSUI T. Numerical solutions of stochastic differential equations-implementation and stability is- sues [J]. Journal of Computational and Applied Mathematics, 2000, 125(1): 171 - 182.
  • 6SAITO Y, MITSUI T. Stability analysis of numerical schemes for stochastic differential equations [J]. SIAM Journal on Numerical Analysis, 1996, 33(6): 2254- 2267.
  • 7BURRAGE K, TIAN T. A note on the stability properties of the Euler methods for solving stochastic differential equations [J]. New Zealand Journal of Mathematics, 2000, 29(2): 115- 127.
  • 8CHEN L, WU F. Almost sure exponential stability of the 0-method for stochastic differential equations [J]. Statistics and Probability Let- ters, 2012, 82(9): 1669 - 1676.
  • 9HIGHAM D J, MAO X, YUAN C. Almost sure and moment expo- nential stability in the numerical simulation of stochastic differential equations [J]. SIAM Journal on NumericalAnalysis, 2007, 45(2): 592 - 609.
  • 10HIGHAM D J, MAO X, STUART A M. Exponential mean-square stability of numerical solutions to stochastic differential equations [J]. LMS Journal of Computation and Mathematics, 2003, 6:297 - 313.

二级参考文献7

  • 1冯昭枢,邓飞其,刘永清.时变滞后随机大系统的稳定性:向量Lyapunov函数法[J].控制理论与应用,1996,13(3):371-375. 被引量:11
  • 2邓飞其,冯昭枢,刘永清.时滞线性随机系统的均方稳定性与反馈镇定[J].控制理论与应用,1996,13(4):441-447. 被引量:8
  • 3Chang M H. Stability of interconnected stochastic delay system [ J]. Applied Mathematics and Computation, 1985,16(3): 277 - 295
  • 4Liu Yongqing, Feng Zhaoshu. Large-scale dynamic systems theory and applications (vol. 4) [M]. Guangzhou: SCUT Press, 1992 ( in Chinese)
  • 5Mao X, Shah A. Exponential stability of stochastic differential delay equations [ J]. Stochastics and Stochastics Reports, 1997,60(2): 135 - 153
  • 6Chen Guanrong. Matrix Theory and Applications [M]. Peking:High Education Press, 1990 (in Chinese)
  • 7Lian Xianxin. Theory and Applications of Stability for Dynamic Sys tems [M]. Peking:National Defense Industry Press, 2000 (in Chinese)

共引文献7

同被引文献19

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部