期刊文献+

基于海量数据的纺纱质量异常因素识别方法 被引量:5

Identification method for abnormal factors of spinning quality based on massive data
下载PDF
导出
摘要 为识别纺纱过程质量特征值的异常波动,对纺纱质量特征值的波动机理进行了理论分析。基于海量纺纱数据设计了一种Dk-means聚类算法,进而提取最优纤维属性变量(断裂伸长),对纺纱质量特征值进行修正,实现变量与特征值之间关系的线性化。提出一种基于Dk-means算法与灰色关联分析的纺纱质量异常因素识别方法,解决了纺纱过程质量异常波动的问题。仿真与实验结果表明,所提出的估计方法从关联系数和关联度的角度实现了纺纱质量异常因素的识别,并实现了质量特征值的波动成因到异常因素与纺纱质量特征值之间的相关关系表达,以及异常因素辨识的可视化。 To identify abnormal fluctuation of quality characteristic values in spinning process, the fluctuation mecha- nism of spinning quality characteristic values were theoretically analyzed. On the basis of massive spinning data, a Dk-means clustering algorithm was designed. Meanwhile, the optimal fiber attribute variable (elongation) was ab- stracted, the spinning quality output characteristic values were corrected, and the linear relationship between varia- ble and characteristic value was completed. An estimating method for abnormal factors of spinning quality based on Dk-means algorithm and gray correlation analysis was proposed, and the abnormal fluctuation problem of spinning quality was solved. Combined with the simulation and experiment, results showed that the proposed estimation method had realized the identification of spinning quality's abnormal factors from the correlation coefficient and cor- relation degree, and the visualization from the fluctuation causes of quality characteristic values to the relationship expression between the abnormal factors and the spinning quality characteristic values, and then to the behavior i- dentification of abnormal factors.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2015年第10期2644-2652,共9页 Computer Integrated Manufacturing Systems
基金 中国纺织工业联合会应用基础研究资助项目(J201508) 中国纺织工业协会指导性计划资助项目(2014076 2013068) 陕西省教育科学"十二五"规划资助项目(SGH140649) 陕西省教育厅科研计划资助项目(2013JK0742 11JK1055) 西安市碑林区科技计划资助项目(GX1510)~~
关键词 异常因素 纺纱质量 识别 海量数据 关联度 abnormal factor spinning quality identification massive data correlation degree
  • 相关文献

参考文献22

  • 1FALLAHPOUR A R, MOGHASSEM A R. Spinning prepa- ration parameters selection for rotor spun knitted fabric using VIKOR method of muhicriteria decision-making[J]. Journal of the Textile Institute,2013,104(1):7-17.
  • 2. KELLY C M, HEQUET E F, DEVERA J K. Breeding for improved yarn quality:modifying fiber length distribution[J]. Industrial Crops and Products, 2013,42(1) : 386-396.
  • 3NURWAHA D, HAN W L, WANG X H. Effects of process- ing parameters on eleetrospun fiber morphology[J]. Journal of the Textile Institute,2013,104(4) : 419-425.
  • 4YANGS,LAMBP.纺纱技术预测精纺模型化纱线的设计[C]//第二届中国国际毛纺织会议论文集.北京:中国纺织出版社,1998:361-366.
  • 5SELVANAYAKI M, VIJAVA M S, JAMUNA K S. et al. An interactive tool for yarn strength prediction using support vector regression[C]//Proceedings of the 2nd International Conference on Machine Learning and Computing (ICMLC 2010). Piscataway, N.J., USA IEEEPress,2010:335- 339.
  • 6MWASIAGI J I, HUANG X B, WANG X H. The use of hy- brid algorithms to improve the performance of yarn parameters prediction models [J]. Fibers and Polymers, 2012, 13 (9): 1201-1208.
  • 7SELVANAYAKI M, VIJAVA M S, JAMUNA K S. et al. An interactive tool for yarn strength prediction using support vector regression[C]//Proceedings of the 2nd International Conference on Machine Learning and Computing (ICMLC 2010). Piscataway, N.J. ,USA IEEE Press,2010:335-339.
  • 8MOZAFARY V, PAYVANDY P. Application of data mining technique in predicting worsted spun yarn quality[J]. Journal of the Textile Institute,2013,105(1):100-108.
  • 9FATTAHI S, TAHERI S M, RAVANDI H. Cotton yarn en- gineering via fuzzy least squares regression[J]. Fibers and Pol- ymers, 2012,13(3) : 390 -396.
  • 10MOKHTAR S, BEN A S, SAKLI F. Optimization of textile parameters of plain woven vascular prostheses[J]. Journal of the Textile Institute,2010,101(12) 51095-1105.

二级参考文献71

共引文献47

同被引文献63

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部