期刊文献+

基于频繁项集分类统计的增量式关联规则应用 被引量:3

Application of Incremental Association Rules Based on Statistical Information of Classified Frequent Itemsets——Taking Supermarket as an Example
下载PDF
导出
摘要 针对商业交易数据构成项目繁多、动态数据增加量大、历史数据量更大的特点,根据频繁项集的商业特征,分为新生、成熟、老化、过期4种类型并分类统计;提出了基于分类统计增量地挖掘新增业务数据中关联规则的算法,算法只需两次扫描新增数据库,无需扫描历史数据库,算法将发现的规则按照其反应的商业特征分为4种类型:新生规则、成熟规则、老化规则、过期规则,在提升规则内容识别效率的同时,强化规则特点的识别能力。 Business activities always generate large dataset and accumulate much larger dataset with many items in each transaction.According to the commercial character,frequent itemsets are classified into four classes:new,mature,aging,expired,and an incremental updating algorithm based on statistical information of classified frequent itemsets is put forward.The algorithm only scans newly increased transaction dataset twice without scanning original transaction dataset,and it can also classify all rules into four classes: new,mature,aging,expired with strong rule identification capability as well as higher rule identification efficiency.
作者 刘绍清
出处 《重庆工商大学学报(自然科学版)》 2015年第12期43-47,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 福建省教育厅A类项目"数据挖掘批量建模技术"(JA12401)
关键词 频繁项集分类 统计信息 增量式更新 关联规则分类 classified frequent itemsets statistical information incremental updating classified association rules
  • 相关文献

参考文献9

二级参考文献61

  • 1易彤,徐宝文,吴方君.一种基于FP树的挖掘关联规则的增量更新算法[J].计算机学报,2004,27(5):703-710. 被引量:32
  • 2陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 3Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 4[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 5[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 6[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 7[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 8[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 9[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 10[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194

共引文献332

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部