摘要
针对目前车联网中提出的协助下载方法的吞吐量低和延迟较长的问题,提出了一种基于动态相邻间距分簇算法的对向协助下载方法。根据道路上车辆的密度不同,动态改变车辆相邻间距使簇保持一个合适的大小;利用分簇算法为车辆分簇;使用分簇的车辆为用户提供协助下载服务。该方法充分利用了道路上行驶的车辆,使更多的车辆加入到协助下载中,提高了用户获取数据吞吐量的同时降低了用户下载数据的延迟。仿真结果表明:使用基于分簇的对向协助下载方法比使用单个车辆对向协助下载时,在盲区的吞吐量提高50%。
Aiming at low throughput and long delay problem of cooperative download method put forward by current vehicular Ad Hoc networks( VANET),a dynamic distance between adjacent vehicles clustering-based opposite direction cooperative downloading approach is proposed. According to different density of vehicles on road,dynamically change distance of adjacent vehicles to make cluster maintain suitable size; clustering algorithm is used for vehicle clustering; use clustered vehicles to provide users with cooperative download. The approach makes full use of vehicles on the road and makes more vehicles join cooperative download and the throughput of user's data acquiring is improved,at the same time,downloading delays is reduced. Simulation results show that,compared with single vehicle opposite direction cooperative downloading,the clustering-based opposite direction cooperative downloading improves throughput by 50 % in dead zone.
出处
《传感器与微系统》
CSCD
2015年第11期45-48,共4页
Transducer and Microsystem Technologies
基金
高等学校博士学科点专项科研基金资助项目(20100111110004)
国家国际科技合作专项项目(2012DFB10060)
关键词
车联网
分簇
协助下载
存储转发
vehicular Ad Hoc networks(VANET)
clustering
cooperative downloading
store and forward