期刊文献+

跨越—侧抑制神经网络序列学习BOD特征建模

Biochemical Oxygen Demand Characteristic Modelling Based on Span-lateral Inhibition Neural Network Sequential Learning
原文传递
导出
摘要 通过对跨越—侧抑制神经网络(S-LINN)的权值连接分析,设计一种跨越输出权值——隐含层前馈连接权值分别训练的序列学习(SFSL)方法,并结合S-LINN的BOD(biochemical oxygen demand)特征建模方法,实现其在线预测.权值序列学习方法能够实现网络权值的快速收敛,进一步提高网络的学习性能.实验研究表明,S-LINN的特征建模能够实现BOD的准确预测,并且SFSL对网络的学习精度和泛化能力均有明显提升. Based on the analysis of the weight connection of the span-lateral inhibition neural network (S-LINN), a sequence learning approach (SFSL) is proposed on the basis of separate training of the span-output weights and the hidden-layer-feedforward weights during the learning process. By combining the intelligent character- istic biochemical oxygen demand (BOD) modeling of the S-LINN, the method can real_ize forecasting values online. The new learning strategy not only accelerates the convergence of weights but also improves the performance of the S-LINN. Experiment results show that the proposed S-LINN sequential learning characteristic modeling approach can achieve high-accuracy BOD prediction mad that the SFSL improves the approximation and generalization abilities of the S-LINN.
出处 《信息与控制》 CSCD 北大核心 2015年第5期577-584,591,共9页 Information and Control
基金 国家自然科学基金资助项目(61034008 61164013 51174091) "973"计划前期研究专项资助项目(2014CB360502) 江西省教育厅科技研究项目(GJJ14402)
关键词 污水处理 生化需氧量 跨越—侧抑制神经网络 序列学习 特征建模 wastewater treatment biochemical oxygen demand(BOD) span-lateral inhibition neural network (S-LINN) sequential learning characteristic modelling
  • 相关文献

参考文献26

  • 1Olsson G. Instrumentation, control and automation in the water industry-state-of-the-art and new challenges[J]. Water Science & Technology 2006, 53(4/5) : 1 -16.
  • 2Zhu J B, Zurcher J, Rao M, et al. An on-line wastewater quality predication system based on a time-delay neural network [ J ] Applications of Artificial Intelligence, 1998, 11 (6) : 747 - 758.
  • 3Khataee A R, Kasiri M B. Modeling of biological water and wastewater treatment processes using artificial neural networks [ J ] Air, Water, 2011, 39(8) : 742 -749.
  • 4Engineering Clean-Soil Haimi H, Mulas M, Corona F, et al. Data-derived soft-sensors for biological wastewater treatment plants : An overview [ J ]. Environmental Modelling & Software, 2013, 47 : 88 - 107.
  • 5Hamed M M, Khalafallah M G, Hassanien E A. Prediction of wastewater treatment plant performance using artificial neural networks [ J ]. En- vironmental Modelling & Software, 2004, 19 (10) : 919 - 928.
  • 6R~iduly B, Gernaey K V, Capodaglio A G, et al. Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study [ J]. Environmental Modelling & Software, 2007, 22 (8) : 1208 - 1216.
  • 7丛秋梅,苑明哲,王宏,庞强,王景杨.基于元学习的污水水质集成软测量模型[J].信息与控制,2014,43(2):248-252. 被引量:6
  • 8Emamgholizadeh S, Kashi H, Marofpoor I, et al. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models [ J ]. International Journal of Environmental Science and Technology, 2014, 11 (3) : 645-656.
  • 9Lee J W, Suh C, Hong Y S, et al. Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network[ J ]. Bio- process and Biosystems Engineering, 2011, 34 (8) : 963 - 973.
  • 10Chen H W, Yu R F, Ning S K, et al. Forecasting effluent quality of an industry wastewater treatment plant by evolutionary grey dynamic model [J]. Resources, Conservation and Recycling, 2010, 54 (4) : 235 - 241.

二级参考文献33

  • 1Kim S, Wang J. Lateral inhibition and concentration- invariant odor perception[J]. J of Biology, 2009, 8(1): 1-3.
  • 2Watts D J, Strogatz S H. Collective dynamics of "small- world" networks[J]. Nature, 1998, 393(6684): 440-442.
  • 3Barabsi A, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
  • 4Cruikshank S J, Lewis T J, Connors B W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex[J]. Nature Neuroscience, 2007, 10(4): 462-468.
  • 5Hartline H K, Ratliff F. Inhibitory interaction of receptor units in the eye of limulus[J]. J of General Physiology, 1957, 40(3): 357-376.
  • 6Xue Y B, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition[J]. Neural Networks, 2007, 20(3): 365-376.
  • 7Smith L S. Adding lateral inhibition to a simple feedforward network enables it to perform exclusive-or[J]. Neural Computation, 1998, 10(2): 277-277.
  • 8Wolberg W. UCI repository of machine learning databases [DB/OL]. [1992-07-15](2012-01-20). http://archive.ics. uci. edu / ml / datasets / Breast + Cancer + Wis / consin+%28 Original%29.
  • 9Karabatak M, Ince M C. An expert system for detection of breast cancer based on association rules and neural network[J]. Expert Systems with Applications, 2009, 36(2): 3465-3469.
  • 10Chen H, Yang B, Liu J, et al. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis[J]. Expert Systems with Applications, 2011, 38(7): 9014-9022.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部