期刊文献+

A Type of C^2 Piecewise Rational Interpolation

A Type of C^2 Piecewise Rational Interpolation
下载PDF
导出
摘要 A family of piecewise rational quintic interpolation is presented. Each interpolation of the family, which is identified uniquely by the value of a parameter ai, is of C^2 continuity without solving a system of consistency equations for the derivative values at the knots, and can be expressed by the basis functions. Interpolant is of O(h^r) accuracy when f(x)∈C^r[a,b], and the errors have only a small floating for a big change of the parameter ai, it means the interpolation is stable for the parameter. The interpolation can preserve the shape properties of the given data, such as monotonicity and convexity, and a proper choice of parameter ai is given. A family of piecewise rational quintic interpolation is presented. Each interpolation of the family, which is identified uniquely by the value of a parameter ai, is of C^2 continuity without solving a system of consistency equations for the derivative values at the knots, and can be expressed by the basis functions. Interpolant is of O(h^r) accuracy when f(x)∈C^r[a,b], and the errors have only a small floating for a big change of the parameter ai, it means the interpolation is stable for the parameter. The interpolation can preserve the shape properties of the given data, such as monotonicity and convexity, and a proper choice of parameter ai is given.
出处 《Computer Aided Drafting,Design and Manufacturing》 2015年第1期40-47,共8页 计算机辅助绘图设计与制造(英文版)
基金 Supported by National Nature Science Foundation of China(No.61070096) the Natural Science Foundation of Shandong Province(No.ZR2012FL05,No.2015ZRE27056)
关键词 SPLINE Cr^2 rational interpolation error estimates monotonicity preserving convexity preserving spline Cr^2 rational interpolation error estimates monotonicity preserving convexity preserving
  • 相关文献

参考文献18

  • 1Costantini P. On monotone and convex spline interpolation [J]. Math Comput, 1986, (46): 203-214.
  • 2Fritsch F N, Carlson R E. Monotone piecewise cubic interpolation [J]. SIAM J Numer Anal, 1980, (17): 238-246.
  • 3Schmidt J W, HeB W. Positivity of cubic polynomials on intervals and positive spline inter-polation [J]. BIT, 1988, (28): 340-352.
  • 4Brodlie K W, Butt S. Preserving convexity using piecewise cubic interpolation [J]. Comput & Graph, 1991, (15): 15-23.
  • 5Fiorot J C, Tabka J. Shape-preserving C2 cubic polynomial interpolating splines [J]. Math Comput, 1991, (57): 291-298.
  • 6Schumaker L L. On shape preserving quadratic spline interpolation [J]. SIAMJNum Anal, 1983, (20): 854-864.
  • 7Goodman T N T, Ong B H. Shape-preserving interpolation by splines using vector subdivi-sion [J]. Adv ComputMath, 2005, (22): 49-77.
  • 8Costantini P, Manni C. Shape-preserving Ce interpolation: the curve case [J]. Adv ComputMath, 2003, (18): 41-63.
  • 9Li Q, Tian J. Partial shape-preserving splines [J]. Comput AidedDes, 2011, (43): 394-409.
  • 10Clements J C. Convexity-preserving piecewise rational cubic interpolation [J]. SlAM J Numer Anal, 1990, (27): 1016-1023.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部