期刊文献+

基于高斯过程回归的平方根UPF算法 被引量:5

Square-root unscented particle filter based on Gaussian process regression
下载PDF
导出
摘要 针对系统动力学模型不准确可能导致滤波精度下降,以及系统状态协方差阵可能出现的负定性问题,提出一种新的高斯过程回归平方根分解无迹粒子滤波(Gaussian process regression square-root decomposition unscented particle filter,GPSR-UPF)算法。在该算法中,采用高斯过程回归求取UPF的重要性密度函数。当系统模型不准确时,通过高斯过程回归学习训练数据,进而获取系统的回归模型及系统噪声协方差,同时引入平方根变换抑制系统状态协方差阵的负定性。将提出的GPSR-UPF算法应用到捷联惯导/全球定位系统(strapdown inertial navigation system/global positioning system,SINS/GPS)组合导航系统中进行仿真验证。结果表明,所提出滤波算法的性能优于基本的无迹粒子滤波算法,能提高组合导航系统的解算精度。 In view of the uncertainty of the system dynamic model may reduce the filtering effect and the system state eovariance matrix is negative definiteness, a new unscented particle filter(UPF) based on Gaussian process regression and square-root decomposition(GPSR) is proposed. The importance density function of UPF is gotten by Gaussian process regression. When the system model and observation model are inaccurate, Gaussi- an process regression is used to learn the training data, the regression models and noise covariance of the dynam- ic system are gotten; square-root decomposition is used to restrain the negative definiteness of the system state covariance matrix. The proposed algorithm is applied to the integrated navigation system of strapdown inertial navigation system / global positioning system (SINS/GPS). The simulation results show that the proposed al- gorithm is better than UPF, and also effectively improves the positioning precision of the navigation system.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2817-2822,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61174193) 航天科技创新基金(2014-HTXGD)资助课题
关键词 高斯过程回归 平方根分解 无迹粒子滤波 组合导航系统 Gaussian process regression square-root decomposition unscented particle filter (UPF) integrated navigation
  • 相关文献

参考文献11

  • 1Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison ofEKF and UKF for spacecraft localization via angle measurements[J]. IEEE Trans. on Aerospace a~M Electronic Systems ,2011,47(1 ) : 75 - 84.
  • 2Gerasimos G R. Nonlinear Kalman filters and particle filters {or integrated navigation o{ unmanned aerial vehicles[J]. Robotics and Autonomous Systems ,2012,60(7) :978 - 995.
  • 3何志昆,刘光斌,赵曦晶,王明昊.高斯过程回归方法综述[J].控制与决策,2013,28(8):1121-1129. 被引量:188
  • 4刘开云,方昱,刘保国,徐冲.隧道围岩变形预测的进化高斯过程回归模型[J].铁道学报,2011,33(12):101-106. 被引量:23
  • 5冯爱明,方利民,林敏.近红外光谱分析中的高斯过程回归方法[J].光谱学与光谱分析,2011,31(6):1514-1517. 被引量:4
  • 6Ferris B, Haehnel D, Fox D. Gaussian processes {or signal strengt h- based location estimation~C~//Proc, of the International Conference on Robotics, Science and Systems, 2006 ,, 303 - 310.
  • 7魏喜庆,宋申民.无模型容积卡尔曼滤波及其应用[J].控制与决策,2013,28(5):769-773. 被引量:18
  • 8Taeryon C. Alternative posterior consistency results in nonpara metric binaryregression using Gaussian process priors[J]. Jour nal of Statistical Planning and Inference, 2007,137(9) : 2975 - 2983.
  • 9Jonathan K, Daniel J K, Dieter F, et al. GP-UKF: unseemed Kalman filters with Gaussian process predietion and observation models~C~//Proc, of the International Conference on Intelli- gent Robots and Systems ,2007:1901 - 1907.
  • 10Gao S S, Wei W H, Zhong Y M, et al. Rapid alignment method based on local observability analysis for strapdown inertial naviga- tion system[J]. Acta Astronautica ,2014,94(2) :790 - 798.

二级参考文献112

共引文献254

同被引文献48

  • 1胡高歌,高社生,赵岩.一种新的自适应UKF算法及其在组合导航中的应用[J].中国惯性技术学报,2014,12(3):357-361. 被引量:23
  • 2SONG Qi,HAN Jian-Da.An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot[J].自动化学报,2008,34(1):72-79. 被引量:28
  • 3Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of process and measurement noise covariance for state and pa- rameter estimation using extended Kalman filter[J]. Journal of Process Control, 2011, 21(4) .-585 - 601.
  • 4Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering[J]. Automatica, 2006, 42 (2) :261 - 270.
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinear esti- mation[J]. Proceedings of the IEEE, 2004, 92(3) ;401 - 422.
  • 6Gao S S, Hu G G, Zhong Y M. Windowing and random weighting-based adaptive unscented Kalman filter [J]. International Journal of Adaptive Control and Signal Processing ,2015,29(2) :201 - 223.
  • 7Cho S Y, Choi W S. Robust positioning technique in low-cost DR/GPS for land navigation[J]. IEEE Trans. on Instruznenta tion and Measurement, 2006,55(4):1132 - 1142.
  • 8Soken H E, Hajiyev C. Pico satellite attitude estimation via ro- bust unscented Kalman filter in the presence of measurement faults[J]. ISA Transactions, 2010, 49(3) ..249 - 256.
  • 9Wang Q ", Xiao D, Pang W Y. The research and application of Adaptive-Robust UKF on GPS/SINS integrated system [J ]. Journal of Convergence Information Technology, 2013, 8(6) : 1169 - 1177.
  • 10Rao C V, Rawlings J B, Mayne D Q. Constrained state estima- tion for nonlinear discrete-time systems: stability and moving horizon approximations[J]. IEEE Trans. on Automatic Con- trol, 2003, 48(2) :246 - 258.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部