期刊文献+

压缩感知高效的分簇数据收集算法 被引量:2

Efficient clustering data collection protocol via hybrid compressed sensing
下载PDF
导出
摘要 压缩感知(compressive sensing,CS)具有减少数据量和能量负载均衡的特点,提供了利用少量测量值恢复原始数据的新方法,使得数据收集的能量消耗大大减少。针对无线传感器网络寿命最大化进行研究,将混合压缩感知算法与分簇算法结合,基站从N个传感器收集M个测量向量,利用压缩感知高概率的恢复N传感器收集的数据,极大地减少了网络能量的消耗。在簇内,簇头节点收集簇内节点的数据,然后对数据压缩进行处理,将自己本身的数据投影后,两者数据相加,簇头间建立骨干网,簇头沿骨干网数据传输数据至父簇头或基站。进一步,分析了网络的能量消耗和能量消耗最少时的最优簇数量的关系,最后,通过实验仿真,提出的算法和已经存在的算法相比能提高网络寿命。 Since compressive sensing(CS) provides a novel number of measurements, the energy consumption for data gathering in WSNs is reduced significantly. This paper investigated the application of CS to data collection in wireless sensor networks and aimed at minimizing the network energy consumption through joint routing and compressed sensing, the sink collected the M projections from N sensors. In the cluster,the common sensors sent their data to the cluster head directly, the cluster head aggregated the received data using CS and forward them to the sink or father cluster head via a backbone routing tree. Furthermore, the paper analyzed the relationship between the network energy consumption and cluster size. The simulation results show that the proposed algorithm is effective, and is better than other existed algorithm in terms of energy consumption.
出处 《计算机应用研究》 CSCD 北大核心 2015年第12期3756-3759,共4页 Application Research of Computers
基金 国家重大设备开发专项资金资助项目(2013YQ030595)
关键词 无线传感器网络 压缩感知 骨干网 分簇 网络寿命 wireless sensor networks compressive sensing backbone cluster network life
  • 相关文献

参考文献18

  • 1Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey[J] . Computer Networks, 2002, 38(4):393-422.
  • 2Dong Guo, Wang Xiaodong. Dynamic sensor collaboration via sequential Monte Carlo[J] . IEEE Journal on Selected Areas in Communications, 2004, 22(6):1037-1047.
  • 3Nguyen M T, Rahnavard N. Cluster-based energy-efficient data collection in wireless sensor networks utilizing compressive sensing[C] //Proc of IEEE Military Communications Conference. 2013.
  • 4Donoho D L. Compressed sensing[J] . IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
  • 5Baraniuk R G. Compressive sensing[J] . Signal Processing Magazine, 2007, 24(4):118-121.
  • 6Luo Chong, Wu Feng, Sun Jun, et al. Compressive data gathering for large-scale wireless sensor networks[C] //Proc of the 15th Annual International Conference on Mobile Computing and Networking. [S. l.] :ACM Press, 2009:145-156.
  • 7Koh K, Kim S J, Boyd S P. An interior-point method for large-scale l1-regularized logistic regression[J] . Journal of Machine Learning Research, 2007, 8(8):1519-1555.
  • 8Becker S, Bobin J, Candès E J. NESTA:a fast and accurate first-order method for sparse recovery[J] . SIAM Journal on Imaging Sciences, 2011, 4(1):1-39.
  • 9Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J] . Applied and Computational Harmonic Analysis, 2009, 27(3):265-274.
  • 10Wang Liangjun, Wu Xiaolin, Shi Guangming. Binned progressive quantization for compressive sensing[J] . IEEE Trans on Image Processing, 2012, 21(6):2980-2990.

二级参考文献30

  • 1崔素辉,陈光亭,辛双.无线传感器网络放置问题容错性算法[J].杭州电子科技大学学报(自然科学版),2009,29(6):107-110. 被引量:3
  • 2沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600. 被引量:267
  • 3李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 4樊勇,张晓彤,万亚东,王沁.实现能量均衡消耗的传感器网络节点摆放策略[J].计算机工程,2007,33(16):11-13. 被引量:5
  • 5AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y,et al. A sur- vey on sensor networks [ J ]. IEEE Communications Magazine, 2002,40(8) : 102-114.
  • 6CULLAR D, ESTRIN D, STRVASTAVA M. Overview of sensor net- works[J]. IEEE Computer, 2004, 37(8) : 41-49.
  • 7YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey [J]. Computer Networks,2008,52(12) :2292-2330.
  • 8HEINZELMAN W, CHANDRAKASAN A, BALAKRISHNAN H. Energy-efficient communication protocol for wireless microsensor net- works[ C ]//Proc of the 33rd Annual Hawaii International Conference on System Sciences. Washington DC : IEEE Computer Society, 2000. 3005-3014.
  • 9ABBASI A A,YOUNIS M. A survey on clustering algorithms for wire- less sensor networks [ J ]. Computer Communications, 2007,30 (14) :2826 -2841.
  • 10JIN Yan, WANG Ling, KIM Y, et al. EEMC: an energy-efficient multi-level clustering algorithm for large-scale wireless sensor networks [ J ]. Computer Networks,2008,52 ( 3 ) :542- 562.

共引文献2

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部