期刊文献+

基于SLIC与条件随机场的图像分割算法 被引量:14

Image segmentation based on SLIC and conditional random field
下载PDF
导出
摘要 针对条件随机场(CRF)模型在参数估计及模型推断阶段时间复杂度较高的问题,引入简单线性迭代聚类(SLIC)的超像素方法,提出一种基于SLIC的条件随机场图像分割算法。该算法首先通过SLIC对图像进行预处理,将图像划分成内部相似性较高的超像素区域,然后以超像素作为节点建立CRF图模型,最后通过参数估计及模型推断获得图像分割结果。实验结果表明,基于SLIC的条件随机场图像分割模型在获得较好分割结果的同时,极大缩短了运行时间,提高了分割的效率。 The stage of estimating parameter and inferencing model in conditional random field (CRF) has a high time complexity. To improve this problem, this paper introduced the conception of simple linear interactive clustering ( SLIC ) method into the CRF model, and proposed a SLIC-based CRF image segmentation algorithm. Firstly, the algorithm pre-segmented the image into small homogeneous super-pixel regions by using SLIC method. Then it constructed the CRF graphical model with super-pixels as nodes. Finally, it obtained the segmentation results by estimating parameter and inferencing model. The experiments show that the proposed algorithm can obtain good results. At the same time, it can reduce the running time largely and improve the efficiency.
作者 孙巍 郭敏
出处 《计算机应用研究》 CSCD 北大核心 2015年第12期3817-3820,3824,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(10974130) 中央高校基本科研业务费专项资金资助项目(GK201405007)
关键词 条件随机场 简单线性迭代聚类 超像素 图像分割 参数估计 conditional random field simple linear interactive clustering super-pixel image segmentation parameter estimation
  • 相关文献

参考文献27

  • 1Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision[M] . Chonburi:CL Engineering Co. Ltd. , 2007:175.
  • 2Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation:advances and prospects[J] . Pattern Recognition, 2001, 34(12):2259-2281.
  • 3Li S Z. Markov random field modeling in image analysis[M] . London:Springer-Verlag, 2009:13.
  • 4Lafferty J, McCallum A, Pereira F. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C] //Proc of the 18th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers, 2001:282-289.
  • 5Neapolitan R E. Learning Bayesian networks[M] . Upper Saddle River:Prentice Hall, 2004:20.
  • 6Wang Yang, Loe K F, Wu Jiankang. A dynamic conditional random field model for foreground and shadow segmentation[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(2):279-289.
  • 7He Xuming, Zemel R S, Carreira-Perpinan M A. Multi-scale conditional random fields for image labeling[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2005:695-702.
  • 8Kumar S, Hebert M. Discriminative random fields:a discriminative framework for contextual interaction in classification[C] //Proc of the 9th IEEE International Conference on Computer Vision. Washington DC:IEEE Computer Society, 2003:1150-1157.
  • 9Reynolds J, Murphy K. Figure-ground segmentation using a hierarchical conditional random field[C] //Proc of the 4th Canadian Conference on Computer and Robot Vision. Washington DC:IEEE Computer Society, 2007:175-182.
  • 10Chatzis S P, Kosmopoulos D I, Diliotis P. A conditional random field-based model for joint sequence segmentation and classification[J] . Pattern Recognition, 2013, 46(6):1569-1578.

同被引文献66

引证文献14

二级引证文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部