期刊文献+

身管固有频率高效全局灵敏度分析 被引量:6

An effective global sensitivity analysis method for natural frequencies of a barrel
下载PDF
导出
摘要 为获得影响身管固有频率的关键参数,将身管固有频率写成其参数的混沌多项式形式,提出基于灵敏度的混沌多项式自适应展开,采用LASSO(Least Absolute Shrinkage and Selection Operator)自动选择重要项及其展开系数,根据混沌多项式的正交性直接由混沌多项式展开系数解析获得身管参数的全局灵敏度因子。算例1表明基于灵敏度的多项式自适应展开能够根据变量的重要性选择多项式的展开阶数,算例2通过一个标准模型验证提出方法的有效性和高效性。此外,身管算例表明对于低阶固有频率摇架前支点位置及对应的身管圆柱段直径和身管炮口处直径为核心关键参数。 In order to obtain a barrel's key parameters affecting its natural frequencies,the polynomial chaos expansion was used to describe the relation of its natural frequencies and its structural parameters.The adaptive expansion strategy for the polynomial chaos based on the sensitivity was proposed to obtain polynomial chaos expansions with different orders.The important terms and corresponding expansion coefficients were obtained automatically by using the least absolute shrinkage and selection operator (LASSO).Based on the orthogonality of the polynomial chaos,the global sensitivity factors for structural parameters of the barrel were obtained directly with coefficients of the polynomial chaos expansion.Example 1 indicated that the proposed method can select expansion orders according to the importance of variables.A benchmark example was presented to demonstrate the effectiveness and higher efficiency of the proposed method.In addition,the numerical examples of barrels indicated that the position of the front fulcrum of the cradle,the corresponding cylinder diameters of barrels and the diameters at barrels muzzles are the key parameters affecting lower order natural frequencies of barrels.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第21期31-36,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(11472137 51205207)
关键词 身管 灵敏度分析 混沌多项式 LASSO LASSO barrel sensitivity analysis polynomial chaos LASSO
  • 相关文献

参考文献21

二级参考文献85

  • 1郝建华,曾京,邬平波.铁路车辆垂向减振与悬挂系统参数优化[J].交通运输工程学报,2005,5(4):10-14. 被引量:17
  • 2曾京,邬平波,郝建华.铁道客车系统的垂向减振分析[J].中国铁道科学,2006,27(3):62-67. 被引量:40
  • 3毛为民,朱石坚,陈刚,江惠明.隔振系统的灵敏度分析[J].海军工程大学学报,2007,19(2):68-71. 被引量:7
  • 4Satelli A. Sensitivity analysis for importance assessment. Risk Anal- ysis, 2002, 22(3): 579-590.
  • 5Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineer- ing & System Safety, 2003, 81:23-69.
  • 6Helton JC, Davis FJ. Sampling-based methods. In: Saltelli A, Chan K, Scott EM, eds. Sensitivity Analysis. New York: Wiley, 2000, 101-153.
  • 7Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analy- sis for model output: a comparison of selected techniques. Reliabil- ity Engineering & System Safety, 1990, 28:229-253.
  • 8Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modelling & Computer Experiment, 1993, 1: 407- 414.
  • 9(in Russian) Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Com- puters in Simulation, 2001, 55(1): 221-280.
  • 10CastiUo E, Minguez R, Castillo C. Sensitivity analysis in optimiza- tion and reliability problems. Reliability Engineering & System Safety, 2008, 93(12): 1788-1800.

共引文献20

同被引文献58

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部