期刊文献+

Gorenstein n-余挠模及Gorenstein n-余挠维数

Gorenstein n- Cotorsion Modules and Gorenstein n- Cotorsion Dimension
下载PDF
导出
摘要 在右n-凝聚环上研究Gorenstein n-余挠模的相关性质,证明了在右n-凝聚环上Gorenstein n-平坦模的Gorenstein n-余挠包络是Gorenstein n-平坦模,Gorenstein n-余挠模的Gorenstein n-平坦覆盖是Gorenstein n-余挠模;将n-余挠模的相关性质推广到Gorenstein n-余挠模上;在右n-凝聚环上讨论模和环的Gorenstein n-余挠维数的相关性质,给出了右n-凝聚环的左Gorenstein n-余挠整体维数与其他同调维数之间的一些等价刻画. Several relative characterizations of Gorenstein n - cotorsion modules over tight n - coherent tings are shown. It proves that the Gorenstein n - cotorsion envelope of Gorenstein n - flat modules is Gorenstein n - flat module and the Gorenstein n - flat cover of Gorenstein n - cotorsion modules is Gorenstein n - cotorsion module. At the same time, it generates some properties of n - cotorsion modules to Gorenstein n - cotorsion modules. Finally, certain characterizations of Gorenstein n - cotorsion dimension of modules and rings are discussed, and some equivalent descriptions between Gorenstein n - cotorsion global dimension of tight n - coherent tings and other homological dimensions are obtained.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期111-115,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11361051)
关键词 n-凝聚环 GORENSTEIN n-余挠模 GORENSTEIN n-余挠维数 n -coherent rings Gorenstein n- cotorsion modules Gorenstein n -cotorsion dimension
  • 相关文献

参考文献7

  • 1Lee S B. n -coherent rings[ J]. Communication in Alge- bra, 2002, 30(3): 1119- 1126.
  • 2Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions [ J ]. Communication in Algebra, 2009, 37:855 -868.
  • 3Gao Z H. On Gorenstein cotorsion dimension over GF - closed rings[ J]. Bulletin of the Korean Mathematical So- ciety,2014,51 ( 1 ) : 173 - 187.
  • 4Selvaraj C, Udhayakumar R, Umamaheswaran A. Goren- stein n - fiat modules and their covers [ J ]. Asia - Euro- pean Journal of Mathematics, 2014,7 (3) : 1 - 13.
  • 5Enochs E E, Jenda O M G. Relative homological algebra [ M ], Belin: Walter de Grnyter, 2000.
  • 6Enochs E E, Jenda O M G, Lopez - Ramos J A. The ex- istence of Gorenstein flat covers[J]. Mathematics Scand, 2004, 94 ( 1 ) : 46 - 62.
  • 7Holm H. Gorenstein homological dimensions [ J ]. Journal of Pure Application Algebra, 2004, 189 : 167 - 193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部