期刊文献+

R^n中的一个Bonnesen型不等式

A Bonnesen-Style Inequality in the Euclidean Space R^n
原文传递
导出
摘要 研究了n维欧氏空间中凸体K的等周亏格的下界估计,即Bonnesen型不等式.首先加强了Lutwak中得到的关于凸体K的p-平均不等式,用此得到一个用凸体K的均质积分及调和均质积分表示的等周亏格的下界估计. In this paper, we investigate the lower bound of isoperimetric deficit, that is, the Bonnesen-style inequality, for a convex body K in the Euclidean space Rn. Firstly we strength the inequality obtained by Lutwak, then we get a Bonnesen-style inequality expressing by quermassintegrale and harmonics quermassintegrale of the convex body K.
出处 《数学的实践与认识》 北大核心 2015年第21期210-214,共5页 Mathematics in Practice and Theory
基金 贵州省科学技术基金项目(2012gz10256) 中央高校基本业务费专项资金资助(XDJK2014C164)
关键词 等周不等式 等周亏格 BONNESEN型不等式 JENSEN不等式 isoperimetric inequality isoperimetric deficit Bonnesen-style inequality Jenseninequality
  • 相关文献

参考文献16

  • 1Bonnesen T. Les problems des isoperimetres et des isepiphanes[M]. Paris, Gauthier-Villars, 1929.
  • 2Bonnesen T, Fenchel W. Theorie der konvexen KSrper [M].Berlin, New York, 1974.
  • 3Osserman R. The isoperimetric inequality [J]. Bull Amer Math Soc, 1978, 84: 1182-1238.
  • 4Osserman R. Bonnesen-style isoperimetric inequality [J]. Amer Math Monthly, 1979, 86: 1-29.
  • 5Santalo L. Integral geometry and geometric probability [M]. Addison-Wesley, Reading, Mass, 1976.
  • 6Klaln D. Bonnesen-type inequalities for surfaces of constant curvature [J]. Advances in Applied Mathematics, 2007, 39(2): 143-154.
  • 7任德鳞.积分几何学引论[M].上海:上海科学技术出版社,1988.
  • 8Hadwiger H. Vorlesungen fiber Inhalt Oberflache und Isoperimetrie[M]. Spring-Verlag Berlin, 1957.
  • 9Diskant V. A generalization of Bonnesen's inequalities [J]. Soviet Math Dokl, 1973, 14:1728-1731 (Transl. of Dokl. Akad. Nauk SSSR, 213(1973)).
  • 10Zhang G. Geometric inequalities and inclusion measures of convex bodies [J]. Mathematika, 1994, 41: 95-116.

二级参考文献22

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 3Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 4Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 5Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 6Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 7Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 8Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 9Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 10Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部