期刊文献+

椭圆曲线底层域快速算法的优化 被引量:3

Optimizing fast field operation in elliptic curves
下载PDF
导出
摘要 为了提高椭圆曲线底层域运算的效率,基于将乘法转换为平方运算的思想,提出在素数域FP上用雅克比坐标直接计算2kP和3kP的改进算法,其运算量分别为(3k-1)M+(5k+3)S和(6k-1)M+(9k+3)S,与DIMITROY和周梦等人所提的算法相比,算法效率分别提升了6.25%和5%。另外,利用相同的原理,给出了素数域FP上用在仿射坐标系直接计算3kP的改进算法,其运算量为I+(6k+1)M+(9k+1)S,与周梦和殷新春等人所提的算法相比,效率分别提升了3.4%和24%。 To raise the efficiency of field operation on elliptic curve, based on the idea of trading multiplications for squares, two modified algorithms are proposed to compute 4P and 5P directly over prime field FPin terms of affine coordinates, their computational complexity are(3k- 1)M +(5k + 3)S and(6k- 1)M +(9k + 3)S respectively, which are improved to 6.25% and 5% respectively than those of Dimitroy’s and Zhou meng’s method. Moreover, using the same idea, an improved method is given to compute 3kP directly in terms of affine coordinates, its computational complexity is I +(6k + 1)M +(9k + 1)S, and the efficiency of the new method is improved to 3.4% and 24% respectively than those of Zhong meng’s and Yin xin-chun’s method.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第22期115-118,共4页 Computer Engineering and Applications
基金 浙江省教育厅科研项目资助(No.Y201533946)
关键词 椭圆曲线密码体制 标量乘法 底层域运算 仿射坐标 雅克比坐标 elliptic curve cryptosystem scalar multiplication field operation affine coordinate jacobian coordinate
  • 相关文献

参考文献15

  • 1赖忠喜,张占军,陶东娅.椭圆曲线中直接计算7P的方法及其应用[J].计算机应用,2013,33(7):1870-1874. 被引量:14
  • 2Hankerso D, Menezes A, Vanstone S.Guide to elliptic curvecryptography[M].New York: Springer-verlag, 2004 : 76-81.
  • 3殷新春,侯红祥,谢立.基于双基数的快速标量乘算法[J].计算机科学,2008,35(6):186-189. 被引量:6
  • 4Dimitrov V S, Imbert L,Mishra P K.Fast elliptic curve point multiplication using double-base chains[EB/OL]. [2007-04-10].http//eprint.iacr.org/2005/069.
  • 5Dimitrov V S, Jullien G A.A new number representation with applications[J].IEEE Circuits and Systems Magazine, 2003(2) : 6-23.
  • 6Mishra P K,Dimitrov V.Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multi- base number representation[C]//Proceedings of the 10th Information Security Conference.Berlin: Springer-Verlag, 2007 : 390-406.
  • 7Mahdavi R, Saiadian A.Efficient scalar multiplications for elliptic curve cryptosystems using mixed coordinates strategy and direct computations[M]//Cryptology and Network Se- curity.Berlin Heidelberg: Springer, 2010 : 184-198.
  • 8Sakuraik S.Efficient scalar multiplications on elliptic curves with direct computations of several doublings[J].lEEE Trans- actions on Fundamentals,2001 ,E84-A( 1 ) : 120-129.
  • 9Dimitroy V, Imvert L, Mishra P K.Efficient and secure elliptic curve point multiplication using double base chain[C]//Pro- ceedings of the l lth International Conference on the Theory and Application of Cryptology and Information Security. LNCS 3788.Chennai : Springer-Verlag, 2005 : 59-78.
  • 10Ciet M, Joye M, Lauter K, et al.Trading inversions for multiplications in elliptic curve cryptography[J].Designs Codes and Cryptography, 2006,39 (2) : 189-206.

二级参考文献45

  • 1刘连浩,申勇.椭圆曲线密码体制中标量乘法的快速算法[J].计算机应用研究,2009,26(3):1104-1108. 被引量:12
  • 2Koblitz N.Elliptic curve cryptosystems[J].Mathematics of Compute,1987,48 (177):203-209.
  • 3Miller V S.Uses of elliptic curves in cryptography[C] //Proceedings of Advances in Cryptology,CRYFTO'85.Berlin,Heidelberg:Springer Press,1986,218:417-428.
  • 4Dimitrov V S,Juilien G L.Loading the bases:A new number representation with applications[J].IEEE Circuits and Systems Magazine,2003,3(2):6-23.
  • 5Dimitrov V S,Imbert L,Mishra P K.Fast elliptic curve point multiplication using double-base chains[EB/OL].[2007-04-10].http//eprint.iacr.org/2005/069.
  • 6Mishra P K,Dimitrov V S.Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number reprentation[EB/OL].[2007-O4-10].http://eprint.iacr.org/2007/040.
  • 7Eisentrager K,Lauter K,Montgomery P L.Fast elliptic curve arithmetic and improved Weil pairing evaluation[C] //Proceedings of Topics in Cryptology,CT-RSA 2003.Berlin,Heidelberg:Springer Press,2003,2612:343-354.
  • 8Ciet M,Joye M,Lauter K,et al.Trading inversions for multiplications in elliptic curve cryptogruphy[J].Designs Codes and Cryptography,2006,39:189-206.
  • 9Sakuraik S.Efficient scalar multiplications on elliptic curves with direct computations of several doublings[J].IEEE Transactions on Fundamentals,2001:120-129.
  • 10Solinas J. An improved algorithm for arithmetic on a family of elliptic curves [J]. Advances in Crytology-Crypto ' 97, LNCS, Springer-Verlag, 1997,1294:357-371

共引文献27

同被引文献18

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部