期刊文献+

肌苷生产菌枯草芽孢杆菌ATCC 13952的全基因组测序及序列分析 被引量:9

Whole-genome sequencing and analysis of inosineproducing strain Bacillus subtilis ATCC 13952
原文传递
导出
摘要 【目的】枯草芽孢杆菌ATCC 13952是一株肌苷工业生产菌株。为深入研究ATCC 13952菌株积累肌苷的分子机制以及为进一步分子育种研究提供序列背景信息,有必要解析ATCC 13952菌株的基因组序列信息。【方法】本研究采用高通量测序和Sanger测序相结合对ATCC 13952菌株进行全基因组测序,然后使用相关软件对测序数据进行基因组组装、基因预测与功能注释、GO/COG聚类分析、共线性分析等。【结果】枯草芽孢杆菌ATCC 13952整个基因组大小为3876276 bp,GC含量为45.8%,序列已提交至Gen Bank数据库,登录号为CP009748。比较基因组及嘌呤代谢相关基因分析结果显示:枯草芽孢杆菌ATCC 13952与其他几株芽孢杆菌具有较好的基因组共线性关系,嘌呤代谢相关基因编码的蛋白与标准菌株比较发生了一些缺失和突变。【结论】本研究首次报道了一株肌苷生产菌枯草芽孢杆菌ATCC 13952的全基因组序列,分析了基因组基本特征,初步探讨了该菌株积累肌苷的分子机制,为后续的进一步分子育种提供了理论基础。 [ Objective] Bacillus subtilis ATCC 13952 is an inosine-producing strain. In order to study the mechanisms of inosine accumulation and offer help for molecular breeding, it is necessary to uncover the genome sequence of ATCC 13952. [ Methods] Whole-genome sequencing of ATCC 13952 is carried out by Solexa and Sanger sequencing. Genome assembly, gene prediction and functional annotation, GO/COG cluster analysis and synteny analysis are done using relevant software. [ Results] The complete genomic information of Bacillus subtilis ATCC 13952 is contained on a single circular chromosome of 3876276 bp with an average GC content of 45.8%. The genome sequence is deposited in the GenBank under the accession number CP009748. Comparative genomic analysis shows that ATCC 13952 should have significant genomic synteny with other Bacillus subtilis strains. On the other hand, some point mutation and deletions occurred in purine metabolism-related genes between ATCC 13952 and the standard strain. [ Conclusion] The results of this study will provide a theoretical basis for subsequent further molecular breeding.
出处 《微生物学报》 CAS CSCD 北大核心 2015年第12期1560-1567,共8页 Acta Microbiologica Sinica
基金 国家自然科学基金(31260137) 江西省自然科学基金(20132BAB214006)~~
关键词 肌苷 枯草芽孢杆菌 全基因组测序 分子机制 比较基因组分析 inosine, Bacillus subtilis, whole-genome sequencing, molecular mechanism, comparative genomic analysis
  • 相关文献

参考文献25

  • 1周如金,宁正祥,宋贤良.食品及生物工程中的过程耦合技术[J].食品科学,2002,23(12):125-128. 被引量:3
  • 2董明,邵琼芳.肌苷的理化性质及其应用[J].南昌职业技术师范学院学报,1997(2):92-95. 被引量:4
  • 3Demain AL, Jackson M, Vitali RA, Hendlin D, JacobTA. Production of guanosine-5,-monophosphate andinosine-5,-monophosphate by fermentation. Applied andEnvironmental Microbiology^ 1966,14(5) : 821 -825.
  • 4Zakataeva NP, Livshits VA, Gronsky SV , Kutukova EA,Novikova AE, Kozlov YI. Method for producing purinenucleosides and nucleotides by fermentation usingbacterium belonging to the genus Bacillus or Escherichia.US Patent: 8034767. 2011.
  • 5Tominaga M, Shimazaki K, Matsuno K, Yamashita M.Method of converting heterocyclic bases into thecorresponding nucleosides by bacterial action. US Patent :3535207. 1970.
  • 6Mori H , Iida A, Fujio T,Teshiba S. A novel process ofinosine 5'-monophosphate production using overexpressedguanosine/ inosine kinase. Applied Microbiology andBiotechnology, 1997,48(6) : 693-698.
  • 7Shimaoka M, Takenaka Y,Mihara Y, Kurahashi O,Kawasaki H, Matsui H. Effects of xapA and guaAdisruption on inosine accumulation in Escherichia coli.Bioscience, Biotechnology and Biochemistry,2006, 70(12) : 3069-3072.
  • 8Chen SX, Chu J, Zhuang YP, Zhang SL. Enhancementof inosine production by Bacillus subtilis throughsuppression of carbon overflow by sodium citrate.Biotechnology Letters, 2005 , 27 ( 10) : 689-692.
  • 9Li HJ, Zhang GQ, Deng AH, Chen N,Wen TY. Denovo engineering and metabolic flux analysis of inosinebiosynthesis in Bacillus subtilis. Biotechnology Letters,2011,33(8) : 1575-1580.
  • 10Shimaoka M, Takenaka Y,Kurahashi 0,Kawasaki H,Matsui H. Effect of amplification of desensitized purF andprs on inosine accumulation in Escherichia coli. Journal ofBioscience and Bioengineering,2007,103(3) : 255-261.

二级参考文献33

  • 1张蓓,马雷,武改红,张克旭,陈宁.鸟苷生产菌的选育及其发酵条件优化[J].食品与发酵工业,2004,30(7):48-51. 被引量:3
  • 2黄水源,韩社教,梁五更,金涌,俞芷青.反应工程中的过程耦合研究现状及前景[J].石油炼制与化工,1995,26(11):24-29. 被引量:10
  • 3Sheremet AS, Gronskiy SV, Akhmadyshin RA, Novikova AE, Livshits VA, Shakulov RS, Zakataeva NP. Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. Journal of Industrial Microbiology & Biotechnology. 2011, 38(1) : 65-70.
  • 4Zhang GQ, Deng AH, Xu QY, Liang Y, Chen N, Wen TY. Complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and ribavirin. Journal of Bacteriology, 2011, 193(12): 3142-3143.
  • 5Miyagawa KI, Kimura H, Nakahama K, Kikuchi M, Doi M, Akiyama S, Nakao Y. Cloning of the Bacillus subtills IMP dehydrogenase gene and its application to increased production of guanosine. Nature Biotechnology, 1986, 4 (3) : 225-228.
  • 6Wu SC, Wong SL. Development of improved pUBllO- based vectors for expression and secretion studies in Bacillus subtilis. Journal of Biotechnology, 1999, 72 (3) : 185-195.
  • 7Wang P, Roy H. Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. The Journal of Biological Chemistry, 1984, 259 ( 13 ) : 8619- 8625.
  • 8Zakataeva NP, Nikitina OV, Gronskiy SV, Romanenkov DV, Livshits VA. A simple method to introduce marker- free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Applied Microbiology and Biotechnology, 2010, 85(4) : 1201-1209.
  • 9Alegre MT, Rodriguez MC, Mesas JM. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiology Letters, 2004, 241 ( 1 ) : 73-77.
  • 10Bjarne HJ. Mutation in the phosphoribosyl pyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. Journal of Bacteriology, 1988, 170 (3) : 1148-1152.

共引文献11

同被引文献71

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部