期刊文献+

基于符号曲面变化度与特征分区的点云特征线提取算法 被引量:12

Feature Line Detection from Point Cloud Based on Signed Surface Variation and Region Segmentation
下载PDF
导出
摘要 特征线对三维模型的表达和识别具有重要意义,提出了符号曲面变化度的概念,其具备同时表达曲面弯曲程度和凹凸类型的能力,可以作为曲面曲率的良好近似.在此基础上,提出了一种基于符号曲面变化度与特征分区的特征线提取算法.首先选取点云中符号曲面变化度绝对值大于一定阈值的点作为潜在特征点;然后将符号曲面变化度作为区域增长限定条件对潜在特征点进行分割,并在通过局部曲面重建确定区域边界点后,采用基于曲面变化度和距离加权的双边滤波算法迭代细化边界点,以确定特征点真实位置;最后通过建立特征点的最小生成树实现特征线连接.实验结果表明,该算法能很好地识别、分割点云中的特征点,提取到准确、完整的特征线. Feature line detection is important for the representing and understanding of 3D models. In this paper the concept of signed surface variation (SSV) is proposed. Except for the ability to represent local surface variation, SSV can also distinguish concavo surfaces from convex ones, so it is a good approxima-tion to surface curvature. Based on SSV and feature region segmentation, a novel point cloud feature line detection algorithm is present. Firstly, points with large absolute SSV are recognized as potential feature points; Then they are segmented to different regions with the guidance of SSV; On the next, local mesh sur-face of each region is reconstructed from which boundary points are recognized and iteratively thinned using bilateral filtering algorithm; Finally, feature lines are linked by constructing the minimal spanning tree of thinned boundary points. Experiments indicate that our algorithm can recognize and segment potential fea-ture points correctly, and can extract accurate feature lines completely.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第12期2332-2339,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 江苏省青年科学基金(BK20140892) 南京邮电大学校引进人才科研启动基金(NY213038)
关键词 点云 特征线 曲面变化度 曲率 point cloud feature line surface variation curvature
  • 相关文献

参考文献18

  • 1Gumhold S, Wang X L, Macleod R. Feature extraction frompoint clouds[C] //Proceedings of the 10th International MeshingRoundtable. Los Alamitos: IEEE Computer Society Press,2001: 293-305.
  • 2Demarsin K, Vanderstraeten D, Volodine T, et al: Detection ofclosed sharp edges in point clouds using normal estimation andgraph theory[J]. Computer-Aided Design, 2007, 39(4): 276-283.
  • 3Pauly M, Keiser R, Gross M. Multi-scale feature extraction onpoint-sampled surfaces[J]. Computer Graphic Forum, 2003,22(3): 281-289.
  • 4王小超,刘秀平,李宝军,张绍光.基于局部重建的点云特征点提取[J].计算机辅助设计与图形学学报,2013,25(5):659-665. 被引量:39
  • 5庞旭芳,庞明勇,肖春霞.点云模型谷脊特征的提取与增强算法[J].自动化学报,2010,36(8):1073-1083. 被引量:34
  • 6Kim S K, Kim C H. Finding ridges and valleys in a discretesurface using a modified MLS approximation[J]. Computer-Aided Design, 2005, 37(14): 1533-1542.
  • 7Kim S K. Extraction of ridge and valley lines from unorganizedpoints[J]. Multimedia Tools and Applications, 2013, 63(1):265-279.
  • 8Weber C, Hahmann S, Hagen H, et al. Sharp feature preservingMLS surface reconstruction based on local feature line approximations[J]. Graphic Models, 2012, 74(6): 335-345.
  • 9Mérigot Q, Ovsjanikov M, Guibas L J. Voronoi-based curvatureand feature estimation from point clouds[J]. IEEE Transactionson Visualization and Computer Graphics, 2011: 17(6): 743-756.
  • 10Daniels J II, Ochotta T, Ha L K, et al. Spline-based featurecurves from point-sampled geometry[J]. The Visual Computer,2008, 24(6): 449-462.

二级参考文献48

  • 1王奎武,陈发来,陈意云.基于点表示的曲面曲率计算方法[J].小型微型计算机系统,2005,26(5):813-817. 被引量:19
  • 2柯映林,陈曦.叶片破损区域边界的自动提取算法研究[J].计算机辅助设计与图形学学报,2005,17(6):1316-1321. 被引量:6
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4Ohtake Y, Belyaev A, Seidel H P. Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics, 2004, 23(3): 609-612.
  • 5Ohtake Y, Belyemv A, Alexa M, Turk G, Seidel H P. Multilevel partition of unity implicits. ACM Transactions on Graphics, 2003, 22(3): 463-470.
  • 6Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C T. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1): 3-15.
  • 7Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes in C: The Art of Scientific Computing (Second Edition). Cambridge: Cambridge University Press, 1992.
  • 8Lee I K. Curve reconstruction from unorganized points. Computer Aided Geometric Design, 2000, 17(2): 161-177.
  • 9Levin D. The approximation power of moving least-squares. Mathematics of Computation, 1998, 67(224): 1517-1531.
  • 10Demarsin K, Vanderstraeten D, Volodine T, Roose D. Detection of Closed Sharp Feature Lines in Point Clouds for Reverse Engineering Applications, Technical Report TW 458, Department of Computer Science, Katholieke Universitv Leuven. Belgium. 2006.

共引文献86

同被引文献64

引证文献12

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部