期刊文献+

基于边分类的SVM模型在社区发现中的研究 被引量:3

The SVM Model Based on Edge Classification Research in Community Detection
下载PDF
导出
摘要 社区发现是复杂网络研究的重要内容,也是分析网络结构的重要途径。分析了社区发现研究中存在的问题,提出了一种基于边分类的SVM模型。通过边顶点相似度和边介数来表示边的特征,从而构造分类函数。利用LFR生成社区结构已知的人工网络,通过人工网络数据训练基于边分类的SVM模型,对分类函数的参数进行估计,利用训练模型对真实网络进行社区分类并通过标准化互信息(NMI)和整体准确度来评价分类效果。实验得到了较高的整体准确度和NMI值。实验表明基于边分类的SVM训练模型对真实网络数据的社区划分有较高的准确度,表明该方法是可行的。 The community detection is an important part of the complex network research,and it is also the important way to analyze the network structure. In this paper,the problems existing in the community detection research are analyzed and a kind of SVM model based on the edge classification is proposed. Based on vertex similarity and edge betweenness the characteristics of the edge are represented,so the classification function is constructed. The artificial network of the known community structure is generated by LFR. Through artificial network data training based on edge classification of SVM model,the parameters of classification function are estimated and the real network community is simulated by using the trained model. The higher overall accuracy and NMI values are got in the experiment. Experiments show that the edge classification of SVM trained model have higher accuracy on real network data and the method is effective.
出处 《长春理工大学学报(自然科学版)》 2015年第5期127-130,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 社区发现 边分类 SVM模型 LFR community detection edge classification SVM model LFR
  • 相关文献

参考文献11

  • 1程学旗,沈华伟.复杂网络的社区结构[J].复杂系统与复杂性科学,2011,8(1):57-70. 被引量:69
  • 2Girvan M, Newman M E J. Community structure in social and biological networks [J].Proceedings of the National Academy of Sciences, 2002, 99 (12) : 7821-7826.
  • 3Newman M E J. Fast algorithm for detecting com- munity structure in networks. [J]. Phys Rev E Star Nonlin Soft Matter Phys, 2004,69 (6) 279-307.
  • 4Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Re- view E, 2004, 69 (2) : 292-313.
  • 5Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. [J]. Phys Rev E Star Nonlin Soft Matter Phys, 2007,76 ( 3 ) : 036106-036111.
  • 6LeiTang,HuanLiu著,文益民,闭应洲译.社会计算:社区发现和社会媒体挖掘[M].北京:机械工业出版.2012.
  • 7Laarhoven T V, Marchiori E. Network community detection using edge classifiers trained on LFR graphs[C].ESANN 2013:21st European Symposium on Artificial Neural Networks,Computational Intelli- gence And Machine Learning Binges April 24-25-26,2013.
  • 8Proceedings, 2013. Guyon I,Weston J,Barnhill S,et al. Gene Selection for Cancer Classification using Support Vector Ma- chines [ J ] .Machine I,eaming, 2002,46 (1-3) : 389-422.
  • 9巩知乐,张德贤,胡明明.一种改进的支持向量机的文本分类算法[J].计算机仿真,2009,26(7):164-167. 被引量:37
  • 10I.anc/chinetti A, Fortunato S, Kertsz J. Detecting the overlapping and hierarchical community stmc- tare in complex networks [J]. New Journal of Physics, 2009,11 ( 15 ) : 19-44.

二级参考文献90

  • 1G. Agarwal,D. Kempe.Modularity-maximizing graph communities via mathematical programming[J]. The European Physical Journal B . 2008 (3)
  • 2Ulrike Luxburg.A tutorial on spectral clustering[J]. Statistics and Computing . 2007 (4)
  • 3David Lusseau,Karsten Schneider,Oliver J. Boisseau,Patti Haase,Elisabeth Slooten,Steve M. Dawson.The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology . 2003 (4)
  • 4Cheng X Q,Shen H W.Uncovering the community structure associated with the diffusion dynamics on networks. JStat Mech . 2010
  • 5Almendral J A,Leyva I,Li D,et al.Dynamics of overlapping structures in modular networks. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2010
  • 6Rosvall M,Bergstrom C T.An information-theoretic framework for resolving community structure in complex network-s. Proceedings of the National Academy of Sciences of the United States of America . 2007
  • 7Bagrow J P.Evaluating local community methods in networks. J Stat Mech . 2008
  • 8Carmi S,Krapivsky P L,Ben-Avraham D.Partition of networks into basins of attraction. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2008
  • 9Leskovec J,Lang K J,Dasgupta A,et al.Statistical properties of community structure in large social and informationnetworks. http://portal.acm.org/citation.cfm?id=1367591 . 2010
  • 10Shen H W,Cheng X Q,Cai K,et al.Detect overlapping and hierarchical community structure in networks. Physical Review A Atomic Molecular and Optical Physics . 2009

共引文献104

同被引文献32

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部