期刊文献+

用户在社会化引文软件中的阅读数据积累程度与有效性分析——以Altmetrics指标为例 被引量:5

An Analysis of the Accumulation State and the Validity of User Readership Data in Online Reference Managers——Take the Indicators of Altmetrics as an Example
原文传递
导出
摘要 【目的】研究目前Mendeley中文献用户阅读数据是否得到充分积累,及其能否揭示优质文献,对Altmetrics中用户阅读数据指标在科学评估中的价值进行评价。【方法】选定文献集合,对Web of Science、Google Scholar上被引数目与Mendeley上用户阅读数目进行统计和相关性分析。【结果】在研究集合中,用户阅读数据相比原先得到良好的积累,且和文献被引数据保持良好的相关度,但高被引文献的被引数据与用户阅读数据的相关度相比总体相关度较低。【局限】文献样本集合仅针对所选定的特定学科和期刊,在数据的代表性和全面性上存在不足,是否能推广至其他领域有待进一步研究。【结论】在Altmetrics各类指标中,以Mendeley的用户阅读数据代表的用户阅读数据是评价文献质量的良好指标,可对引文分析进行补充。 [Objective] The research investigates whether user readership data in Mendeley is reliable and useful in evaluating scientific literatures and whether user readership data can reveal high quality articles, to validate the indicators of Altmetrics in scientific evaluation. [Methods] The paper selects a number of articles, collects these articles' citations in Web of Science (WoS) and Google Scholar (GS) and user readership data in Mendeley, and then makes statistical and correlational analyses. [Results] Mendeley has accumulated much more user data than before. Articles' user readership data have strong relationship with the citations in WoS and GS. However, the relationship between user counts and citations in the articles that have highest citations in WoS is relatively weaker. [Limitations] In this research, articles come from less journals in a specific field, that may make it be lack of representativeness and comprehensiveness. [Conclusions] User readership data could be useful to act as a supplement of present scientific evaluation indicators.
出处 《现代图书情报技术》 CSSCI 2015年第11期75-81,共7页 New Technology of Library and Information Service
关键词 Altmetrics 社会化引文软件 用户阅读数据 科学评估 Altmetrics Online social reference manager User readership data Scientific evaluation
  • 相关文献

参考文献26

  • 1Garfield E. Citation Indexing for Studying Science [J].Nature, 1970, 227(5259): 669-671.
  • 2Garfield E. Citation Analysis as a Tool in Journal Evaluation[J]. Science, 1972, 178(4060): 471-479.
  • 3McSweeney P, Prince R,Hargood C, et al. AggregatedErevnametrics: Bringing Together Alt-metrics ThroughResearch Objects [C]. In: Proceedings of the 2011 ACMWeb Science Conference, Koblenz, Germany. 2011.
  • 4MacRoberts M H, MacRoberts B R. Problems of CitationAnalysis: A Study of Uncited and Seldom-Cited Influences[J]. Journal of the American Society for Information Scienceand Technology, 2010, 61(1): 1-12.
  • 5MacRoberts M H, MacRoberts B R. Problems of CitationAnalysis [J]. Scientometrics, 1996, 36(3): 435-444.
  • 6Alhoori H, Furuta R. Can Social Reference ManagementSystems Predict a Ranking of Scholarly Venues [A]. //Springer Berlin Heidelberg, 2013.
  • 7Thelwall M. Journal Impact Evaluation: A WebometricPerspective [J]. Scientometrics, 2012, 92(2): 429-441.
  • 8Brody T, Hamad S, Carr L. Earlier Web Usage Statistics asPredictors of Later Citation Impact [J]. Journal of theAmerican Society for Information Science and Technology,2006, 57(8): 1060-1072.
  • 9Sutherland W J, Goulson D, Potts S G, et al. Quantifying theImpact and Relevance of Scientific Research [J]. PLoS One,2011,6(11): e27537.
  • 10Tarrant D, Carr L. Using the Co-Citation Network to IndicateArticle Impact [C]. In: Proceedings of the 2011 ACM WebScience Conference, Koblenz, Germany. 2011.

二级参考文献64

  • 1Taraborelli D. ft peer review. Social software and distributed scientific evaluation [ EB/OL ] . [ 2011-12-9 ] . http:// eprints, ucl. ac. uk/8279/.
  • 2Editor from Nature. Quality and value: Models of quality control for scientific research [ EB/OL]. [ 2011-12-9 ]. http://www, nature, com/nature/peerreview/debate/ nature05031, html.
  • 3Priem J, Hemminger B M. Scientometrics 2. 0 : Toward new metrics of scholarly impact on the social web [ EB/OL ]. [ 2011-12-9 ]. http ://www. uic. edu/htbin/cgiwrap/bin,/ ojs/index, php/fm/article/viewArticle/2874/2570.
  • 4Priem J, Taraborelli D, Groth P, et al. Air-metrics : A manifesto[ EB/OL]. [2011-12-9]. http://altmetrics. org/manifesto.
  • 5Jensen M. Authority 3.0: Friend or Foe to Scholars? [EB/ OL]. [ 2011-12-9 ]. http://utpjoumals, metapress, com/ content/14132v164q747147/.
  • 6Patterson M. Article-level metrics at PLoS-addition of usage data[ EB/OL]. [ 2011-12-9 ]. http://blogs, plos org/plos/2OO9/O9/article-level-metfics-at-plos-addition- of-usage-data/.
  • 7Neylon C, Wu S. Article-Level Metrics and the Evolution of Scientific Impact [ EB/OL ]. [ 2011-12-9 ]. http:/! www. ncbi. nlm. nih. gov/pmc/articles/PMC2768794/ pd/ pbio. 1000242. pdf/? tool = pmcentrez.
  • 8Cheverie J F, Boettcher J, Buschman J. Digital scholarship inthe university tenure and promotion process: A report on the sixth scholarly communication symposium at Georgetown University Library [ J ]. Journal of Scholarly Publishing,2009. 40(3) :219-230..
  • 9Anderson K. The impact factor: A too| from a bygone era? [ EB/OL ]. [ 2011-12-9 ]. http://scholarlykitchen. sspnet, org/2009/06/29/is-the-impact-factor-from-a- bvzone-era/.
  • 10Wardle D A. Do ' Faculty of 1000' (F1000) ratings of ecological publications serve as reasonable predictors of their future impact? [ J ] .Ideas in Ecology and Evolution,2010,3 ( 1 ) : 11-15.

共引文献133

同被引文献69

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部