期刊文献+

一种基于2D和3D SIFT特征级融合的一般物体识别算法 被引量:13

A Recognition Algorithm of Generic Objects Based on FeatureLevel Fusion of 2D and 3D SIFT Descriptors
下载PDF
导出
摘要 如何选择合适的特征表示一般物体类间差异和类内共性至关重要,因此,本文在2D SIFT(Scale Invariant Feature Transform,SIFT)的基础上,提出了基于点云模型的3D SIFT特征描述子,进而提出一种基于2D和3D SIFT特征级融合的一般物体识别算法.分别提取物体2维图像和3维点云的2D和3D SIFT特征描述子,利用"词袋"(Bag of Words,Bo W)模型得到物体特征向量,根据特征级融合将两个特征向量进行融合实现物体描述,运用有监督分类器支持向量机(Support Vector Machine,SVM)实现分类识别,给出最终识别结果.最后,实验验证了本文提出算法的好处. Howto choose the appropriate feature to represent differences between classes and the common within class of generic objects is of great importance. So the 3D SIFT( scale invariant feature transform) descriptors of point clouds model based on the 2D SIFT is proposed. Then we propose a newalgorithm based on multiple feature fusion of 2D and 3D SIFT descriptors respectively drawn from 2D images and 3D point clouds. The Bo W( bag of words) model is used to calculate feature vectors and describe the objects according to the multiple feature fusion. The supervised support vector machine( SVM) classier is used to classify objects. Through several experiments,the advantage of this newalgorithm is testified.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第11期2277-2283,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60804063 No.61175091) 航空基金(No.20140169002) 江苏省"青蓝工程"资助计划 江苏省"六大高峰人才"资助计划
关键词 一般物体识别 点云 2D SIFT 3D SIFT 特征融合 BoW模型 SVM分类器 generic object recognition point cloud 2D SIFT 3D SIFT feature fusion BoW SVM
  • 相关文献

参考文献19

  • 1Rusu R B,Blodow N,Marton Z C,Beetz M.Aligning point cloud views using persistent feature histograms. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Nice,France:IEEE,2008.3384-3391.
  • 2Rusu R B,Blodow N,Beetz M.Fast point feature histograms(FPFH) for 3D registration. Proceedings of IEEE International Conference on Robotics and Automation[C]. Kobe,Japan:IEEE,2009.3212-3217.
  • 3Lazebnik S,Schmid C,Ponce J.A sparse texture representation using local affine regions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1265-1278.
  • 4Alexandre L A.3D descriptors for object and category recognition:a comparative evaluation. Proceedings of IEEE International Conference on Intelligent Robotic Systems(Vol Workshop on Color-Depth Camera Fusion in Robotics)[C]. Vilamoura,Portugal:IEEE,2012.1-6.
  • 5陈北京,王蔚,宋加涛,任小波.一种融合二值边缘特征和灰度特征的人脸识别方法[J].电子学报,2009,37(6):1180-1184. 被引量:3
  • 6李新德,潘锦东,DEZERT Jean.一种基于DSmT和HMM的序列飞机目标识别算法[J].自动化学报,2014,40(12):2862-2876. 被引量:17
  • 7Bo L,Lai K,Ren X,Fox D.Object recognition with hierarchical kernel descriptors. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C]. CO,USA:Colorado Springs,2011.1729-1736.
  • 8Bo L,Ren X,Fox D.Depth kernel descriptors for object recognition. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. San Francisco,CA,USA:IEEE,2011.821-826.
  • 9Janoch A,Karayev S,Jia Y,Barron J T,Fritz M,Saenko K,Darrell T.A category-level 3-D object dataset:putting the kinect to work. 2011 IEEE International Conference on Computer Vision Workshops(ICCV Workshops)[C]. Barcelona,Spanish:IEEE,2011.1168-1174.
  • 10Mirdanies M,Prihatmanto A S,Rijanto E.Object recognition system in remote controlled weapon station using SIFT and SURF methods[J]. Mechatronics,Electrical Power,and Vehicular Technology,2013,4(2):99-108.

二级参考文献63

共引文献32

同被引文献114

引证文献13

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部