期刊文献+

进化代谢选育高浓度NH_4^+耐受型产丁二酸大肠杆菌 被引量:1

Isolation of ammonium-tolerant mutant of Escherichia coli for succinic acid production by metabolic evolution
下载PDF
导出
摘要 利用大肠杆菌厌氧制备丁二酸过程中,采用氨水作为p H调节剂不仅可以中和酸性产物还可提供无机氮,被菌体利用,然而高浓度NH_4^+的积累会抑制菌体生长及代谢产酸的能力。为增强大肠杆菌对高浓度NH_4^+的耐受性,以(NH4)2HPO4为NH_4^+供体,通过在连续培养装置中不断提高(NH_4)_2HPO4浓度,以获得可耐受0.53 mol/L NH_4^+的产丁二酸大肠杆菌。结果表明:突变株在0.53 mol/L NH_4^+胁迫下,摇瓶厌氧发酵72 h,细胞干质量浓度(DCW)可达1.82 g/L,丁二酸产量为11.72 g/L,分别比出发菌株提高了1.6和4.6倍。进一步地,在5 L发酵罐上考察其利用氨水调节p H生产丁二酸的能力,厌氧发酵90 h,丁二酸质量浓度达到27.32 g/L,生产强度为0.30g/(L·h),比出发菌株分别提高88.1%和87.5%。 During the process of succinic acid production by Escherichia coli, ammonia was adopted as pH regulator, not only could neutralize organic acid but also as nitrogen source for growth. However, high concentration of NH4 would seriously inhibit the growth and metabolic capability of the strain.To improve the tolerance of E. coli towards high amount of NH4, metabolic evolution was used for isolation of ammonium-tolerant mutants by enhancing the concentration of NH~ gradually which was provided from (NH4) 2HPO4.Finally,a mutant which could tolerant 0. 53 mol/L NH~ was obtained.The results showed when under O. 53 mol/L NH4 in flask, dry cell weight of the mutant reached 1.82 g/L and succinic acid concentration reached 11.72 g/L within 72 h fermentation, which was 1.6- and 4. 6-fold compared with the parent strain respectively. Furthermore, the ability of the mutant using ammonia as pH regulator for succinic acid production was investigated in a 5-L fermentor. After 90 h fermentation, concentration and productivity of succinic acid reached 27.32 g/L and 0. 30 g/(L-h) ,which were increased by 88.1% and 87.5% compared with the parent strain.
出处 《生物加工过程》 CAS 2015年第6期55-60,共6页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)(2013CB733901) 江苏省高校优势学科建设工程
关键词 进化代谢 耐铵 丁二酸 大肠杆菌 metabolic evolution ammonium-tolerant succinic acid Escherichia coli
  • 相关文献

参考文献18

  • 1Willke T,Vorlop K D.Industrial bioconversion of renewable resources as an alternative to conventional chemistry[J].Appl Microbiol Biotechnol,2004,66(2):131-142.
  • 2Cukalovic A,Stevens C V.Feasibility of production methods for succinic acid derivatives:a marriage of renewable resources and chemical technology[J].Biofuels Bioprod Biorefin Biofpr,2008,2(6):505-529.
  • 3Song H,Lee S Y.Production of succinic acid by bacterial fermentation[J].Enzyme Microb Technol,2006,39(3):352-361.
  • 4Lee P C,Lee W G,Lee S Y,et al.Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production[J].Process Biochem,1999,35(1/2):49-55.
  • 5Fang X J,Zheng X Y,Xi Y L,et al.Enhancement of succinic acid production by osmotic-tolerant mutant strain of Actinobacillus succinogenes[J].World J Microbiol Biotechnol,2011,27(12):3009-3013.
  • 6Kim D Y,Yim S C,Lee P C,et al.Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E[J].Enzyme Microb Technol,2004,35(6/7):648-653.
  • 7Lin H,Bennett G N,San K Y.Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J].Biotechnol Bioeng,2005,90(6):775-779.
  • 8Glassner D A,Elankovan P,Beacom D R.Purification process for succinic acid produced by fermentation[J].Appl Biochem Biotechnol,1995,51-52:73-82.
  • 9Ye G Z,Jiang M,Cheng K Q,et al.Isolation of NH+4-tolerant mutants of Actinobacillus succinogenes for succinic acid production by continuous selection[J].J Microbiol Biotechnol,2010,20(8):1219-1225.
  • 10Kronzucker H J,Britto D T,Davenport R J,et al.Ammonium toxicity and the real cost of transport[J].Trends Plant Sci,2001,6(8):335-337.

二级参考文献47

  • 1涂桂云,李敏.基因工程菌高密度发酵工艺研究进展[J].工业微生物,2004,34(3):49-52. 被引量:18
  • 2杨炜,王伟刚,田海英,许伟,温传彬.重组大肠杆菌高表达高密度发酵研究[J].生物技术,2006,16(3):83-86. 被引量:20
  • 3Murarka A, James M C, Gonzalez R. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate- dissimilating enzymes during the fermentative metabolism of glueuronate. Microbiology, 201 O, 156 ( 6 ) : 1860-1872.
  • 4Buurman E T, Mattos M J, Neijssel O M. Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coil. Arch Microbiol, 1991,155 (4) :391-395.
  • 5Schmida J W, Maucha K, Reuss M, et al. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. Metabolic Engineering, 2004,6(4) :363-377.
  • 6Yanofsky C. Using studies on tryptophan metabolism to answer basic biological questions. The Journal of Biological Chemistry, 2003,278 ( 13 ) : 10858-10878.
  • 7Eiteman M A, Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology, 2008,24( 11 ) :530-536.
  • 8刘慧娟,华兆哲,堵国成,刘立明,陈坚.芽孢杆菌发酵生产碱性果胶酶的温度控制策略[J].过程工程学报,2007,7(4):786-789. 被引量:18
  • 9Willke T, Cukalovic KD. Industrial bioconversionof renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol, 2002, 66(2): 131-142.
  • 10Cukalovic A, Stevens CV. Feasibility of productior methods for succinic acid derivatives: a marriage o: renewable resources and chemical technology Biofuels Bioprod Biorefin, 2008, 2(6): 505-529.

共引文献7

同被引文献13

  • 1ZHOU S, SHANMUGAM K T, INGRAM L O. Functional replacement of the Escherichia coil D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici [J]. Appl Environ Mierobiol, 2003, 69(4): 2237-2244.
  • 2WANG Y Z, TIAN T, ZHAO J F, et al. Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli [J]. Bioteehnol Lett, 2012, 34(11): 2069-2075.
  • 3ZHOU S, YOMANO L P, SHANMUGAM K T, et al. Fermentation of 10% (w/v) sugar to D (- )-lactate by engineered Escherichia coli B[J]. Bioteehnol Lett, 2005, 27(23-24): 1891-1896.
  • 4TIAN K M, CHEN X Z, SHEN W, et al. High-efficiency conversion of glycerol to D-lactic acid with metabolically engineered Escherichia coli [J]. Aft J Biotechnol, 2014, 11(21): 4860-4867.
  • 5SENTHURAN A, SENTHURAN V, HATTI-KAUL R, et al. Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization[J]. J Bioteehnol, 1999, 73(1): 61-70.
  • 6TIMBUNTAM W, SRIROTH K, TOKIWA Y. Lactic acid production from sugar-cane juice by a newly isolated Lactobacillus sp.[J]. Bioteeh- nol Lett, 2006, 28(11): 811-814.
  • 7杨卓娜,姜岷,李建,方晓江,叶贵子,白雪飞,郑晓宇,韦萍.不同pH调节剂对产琥珀酸放线杆菌NJ113发酵产丁二酸的影响[J].生物工程学报,2010,26(11):1500-1506. 被引量:11
  • 8姜绍通,张巧兰,吴学凤,罗水忠,潘丽军.不同中和剂对米根霉发酵产L-乳酸的影响[J].食品科学,2010,31(23):114-117. 被引量:1
  • 9赵筱,李坤朋,赵锦芳,王永泽,王金华.高光学纯度L-乳酸工程菌的构建及其蔗糖发酵[J].食品与发酵科技,2012,48(5):40-45. 被引量:6
  • 10李坤朋,许雅洁,赵锦芳,王金华.大肠杆菌工程菌利用玉米浆发酵产L-乳酸的研究[J].中国酿造,2012,31(12):64-67. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部