期刊文献+

一种可鉴别的稀疏保局投影算法 被引量:1

A discriminative sparsity locality preserving projections method
下载PDF
导出
摘要 为了增强高维数据在低维子空间中的模式识别能力,假设任意2个类别相同的相似样本其稀疏表示也相似,并基于SPP和LPP思想,提出一种可鉴别稀疏保局投影降维新方法 DSLPP.该方法通过稀疏表示学习和保局部投影,使得在投影子空间中不仅能够保持稀疏表示对数据很好的表达能力,而且较好地获取高维数据所蕴含的本质局部流形结构和自然判别信息,从而增强高维数据在子空间中的表示能力和可鉴别能力.在3个典型的人脸数据集Yale,ORL和PIE29上,将所提出方法 DSLPP与PCA,LPP,NPE和SPP进行对比试验.结果表明DSLPP是一种有效的降维方法,能够较好地改善高维数据在低维子空间中的分类效果. To improve the pattern recognition for high-dimensional data, assuming that any two similar samples within the same class had similar sparse representations, a novel dimensionality reduction method of discriminative sparsity locality preserving projections (DSLPP) was proposed based on SPP and LPP. Through sparse learning and locality preserving projections, the good sparse representation was preserved by the proposed DSLPP, and the potential local manifold structure and the discrimination information of high-dimensional data were also be well captured in the obtained subspace. The expression ability and the identifiability of high dimensional data were enhanced in the subspace. The experiments were completed on Yale, ORL and PIE29 face databases to compare DSLPP with PCA, LPP, NPE and SPP. The results show that the proposed DSLPP is an effective dimensionality reduction algorithm, and it can well improve the classification performance for high-dimensional data in subspace.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期691-696,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61502208 61170126) 中国博士后科学基金资助项目(2015M570411) 江苏省自然科学基金资助项目(BK20150522) 江苏省高校自然科学研究项目(14KJB520007) 江苏大学高级专业人才科研启动基金资助项目(14JDG037)
关键词 可鉴别稀疏保局投影 稀疏保持投影 保局部投影 稀疏表示 降维 模式分类 discriminative sparsity locality preserving projection sparsity preserving projection locality preserving projection sparse representation dimensionality reduction pattern classification
  • 相关文献

参考文献15

  • 1Wang Liangjun, Wu Xiaolin, Shi Guangming. Binned progressive quantization for compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(6): 2980-2990.
  • 2Mei Xue, Ling Haibin, Jacobs David W. Illumination recovery from image with cast shadows via sparse representation [J]. IEEE Transactions on Image Processing, 2011, 20(8):2366-2377.
  • 3Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 4Deng Weihong, Hu Jiani, Guo Jun. Extended SRC: undersampled face recognition via intraclass variant dictionary[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1864-1870.
  • 5Yang Meng, Zhang Lei, Feng Xiangchu, et al. Sparse representation based fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109(3):209-232.
  • 6詹永照,张珊珊,成科扬.基于非线性可鉴别的稀疏表示视频语义分析方法[J].江苏大学学报(自然科学版),2013,34(6):669-674. 被引量:3
  • 7He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3):328-340.
  • 8Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51.
  • 9He Xiaofei, Cai Deng, Yan Shuicheng, et al. Neighborhood preserving embedding[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005:1208-1213.
  • 10Qiao Lishan, Chen Songcan, Tan Xiaoyang. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1):331-341.

二级参考文献2

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部