期刊文献+

自主确定社区个数的二模网络社区发现算法 被引量:9

Algorithm of Detecting Community in Bipartite Network with Autonomous Determination of the Number of Communities
下载PDF
导出
摘要 现有算法虽然能发现二模网络的社区结构,但由于实际网络的多样性或复杂性,往往不能预知社区个数及相关信息,无法相对准确地发现真实的社区结构.针对此问题,文中提出自主确定社区个数的二模网络社区发现算法——聚类分配算法(CAA).该算法有效利用二模网络中两类节点的交互信息,解决确定社区个数的难题.对网络中的T类节点进行聚类,再将B类节点按照某种分配机制分配到已有类中.实验表明,CAA比基于资源分布矩阵的算法和基于边集聚系数的算法有更高的准确性,能获得更高质量的社区划分. The existing algorithms can find the community structure in bipartite network. However, they can not predict the number of communities and the relevant information and discover the real community structure accurately due to the variety and the complexity of the real network. In this paper, an algorithm of detecting community structure in bipartite network-cluster assign algorithm (CAA) is proposed and it determines the number of communities autonomously. In this algorithm, the interaction information between two types of nodes is used effectively and the problem of determining the number of communities is solved. The T-type nodes of the network are clustered, then the B-type nodes are assigned to theexisting classes according to the allocation mechanism. Experiments show CAA obtains a higher quality community and has a higher accuracy than the algorithms based on resource distribution matrix and edge cluster coefficient.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第11期969-975,共7页 Pattern Recognition and Artificial Intelligence
基金 国家优秀青年基金项目(No.61322211) 教育部新世纪人才支持计划项目(No.NCET-12-1031) 教育部博士点专项科研基金项目(No.20121401110013) 山西省青年学术带头人项目(No.20120301)资助
关键词 二模网络 社区挖掘 聚类分配算法 模块度 Bipartite Network, Community Mining, Cluster-Assign Algorithm, Modularity
  • 相关文献

参考文献18

  • 1Newman M E J. Scientific Collaboration Networks. Ⅰ. Network Con- struction and Fundamental Results. Physical Review E, 2001. DOI: 10. 1103/PhysRevE. 64. 016131.
  • 2Newman M E J. Scientific Collaboration Networks. Ⅱ. Shortest Paths, Weighted Networks, and Centrality. Physical Review E, 2001. DOI: 10. 1103/PhysRevE. 64. 016132.
  • 3Watts D J, Strogatz S H. Collective Dynamics of 'Small-World' Net- works. Nature, 1998, 393:440-442.
  • 4刘爱芬,付春花,张增平,常慧,何大韧.中国大陆电影网络的实证统计研究[J].复杂系统与复杂性科学,2007,4(3):10-16. 被引量:23
  • 5陈文琴,陆君安,梁佳.疾病基因网络的二分图投影分析[J].复杂系统与复杂性科学,2009,6(1):13-19. 被引量:14
  • 6Lambiotte R, Ausloos M. Uncovering Collective Listening Habits and Music Genres in Bipartite Networks. Ph);sical Review E, 2005.DOI: 10. 1103/PhysRevE. 72. 066107.
  • 7Zhang D P, Dai M F, Li L, et al. Distribution Characteristics of Weighted Bipartite Evolving Networks. Physica A: Statistical Me- chanics and Its Applications, 2015, 428:340-350.
  • 8Cui Y Z, Wang X Y. Uncovering Overlapping Community Structures by the Key Bi-community and Intimate Degree in Bipartite Net- works. Physica A: Statistical Mechanics and Its Applications, 2014, 407:7-14.
  • 9Tang L, Liu H. Community Detection and Mining in Social Media. San Rafael, USA: Morgan & Claypool Publishers, 2010.
  • 10Barber M J. Modularity and Community Detection in Bipartite Net- works. Physical Review E, 2007. DOI: 10.1103/PhysRevE. 76. 066102.

二级参考文献39

  • 1赫南,淦文燕,李德毅,康建初.一个小型演员合作网的拓扑性质分析[J].复杂系统与复杂性科学,2006,3(4):1-10. 被引量:16
  • 2罗承忠.模糊集引论[M].北京:北京师范大学出版社,2005:48-83.
  • 3Zhou T,Ren J,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007:76,046115.
  • 4Kwang-ll Goh.The human disease network[J].PNAS,2007,104(21):8685-8690.
  • 5Hamosh A,Scott A F,Amberger J S,et al.Online mendelian in heritance in man(OMIM),a knowledgebase of human genes and genetic disorders[J].Nucleic Acids Res,2005,33:D514-D517.
  • 6Pujana M A,Han J D J,Starita L M,et al.Network modeling links breast cancer susceptibility and centrosome dysfunction[J].Nature Genetics.2007,39(11):1338-1349.
  • 7Newman M E J.Analysis of weighted networks[J].Physical Review E,2004,70:056131.
  • 8Futreal P A.A census of human cancer genes[J].Nat Rev Cancer,2004,4:177-183.
  • 9[1]Albert R,Barabasi A L.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74:47-97.
  • 10[2]Newman M E J.The structure and function of complex networks[J].SIAM Rev,2003,45:167-225.

共引文献29

同被引文献90

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部