摘要
主题模型在机器学习领域已成为研究的一大热点问题。本文系统阐述LDA(Latent Dirichlet Allocation)主题模型参数估计和Gibbs抽样算法,介绍常见的LDA改进和扩展模型,最后分析LDA模型在文本挖掘领域的应用情况。
Topic model is one of the hottest issues in the research area of machine learning. In this paper, the parameter estimation method and the Gibbs sampling algorithm of the Latent Dirichlet Allocation (LDA) model are systematically described. And then, several improved and generalized LDA models are introduced. Finally, the applications of the LDA model in the field of text mining are analyzed.
出处
《合肥师范学院学报》
2015年第6期55-58,61,共5页
Journal of Hefei Normal University
基金
安徽省高校省级自然科学研究重点项目(KJ2014A198)
合肥师范学院校级科研项目(2015TD05)