期刊文献+

基于权重系数模糊C均值聚类

Based on the weight coefficient of fuzzy c-means clustering
下载PDF
导出
摘要 传统基于模糊C均值聚类图像分割算法易受复杂纹理和噪声干扰,无法准确分割图像。针对这一现象,提出一种基于权重系数模糊C均值聚类算法,并将其应用于图像分割中。算法定义权重系数矩阵,将每个像点的邻域信息引入到像点间相似性度量中,计算每个像点与聚类中心点的邻域相似程度,根据权重系数矩阵确定邻域中每个像点在邻域特征计算中所占权重,增强了算法对噪点和杂波的鲁棒性。实验结果表明,与传统模糊C均值聚类算法相比,该文算法获得更加精确的图像分割结果。 A weighting coefficient matrix based fuzzy C--means clustering algorithm for image segmentation was proposed to solve the problems that the segmentation results of the traditional FCM based image segmentation algorithms were easily disturbed by complex texture and noise. In this algorithm,weighting coefficient matrix was defined to calculate neighborhood feature for every pixel in the image,and neighborhood information for every pixel in the image was introduced into similarity measure calculation between pixels and cluster centers,that can improve the robustness of the improved algorithm to noise and clutter. The experimental results demonstrated that the propnsed algorithm achieves more accurate image segmentation compared with traditional FCM algorithms.
作者 卢唯实 常瑶
出处 《科技资讯》 2015年第11期245-247,共3页 Science & Technology Information
关键词 模糊C均值聚类 权重系数 FCM Fuzzy c--means clustering:Weight coefficient FCM
  • 相关文献

参考文献11

  • 1Karasulu B, Korukoglu S.A simu- lated annealing-based optimal thresh- old determining method in edge-based segmentation of grayscale images[J]. Applied SoftComputing, 201 l, 1 ! (2) : 2246-2259.
  • 2Isa N A M,Salamah S A,Ngah U K. Adaptive fuzzy movingk-means clus- tering algorithm for image segmentation [J].IEEETransactions on Consumer Electronics, 2009,55(4) : 2145-2153.
  • 3Bezdek J C. Cluster validity with fuzzy sets[J].eybernetics and Systems, 1974, 3(3): 58-73.
  • 4Boykov Y,Veksler O,Zabih R.Fast approximate energy minimization via graph cuts[ C ]//Proceedings of the 7th IEEE International Conference on Com- puter Vision.Los Alamitos:IEEE Com- puter Society Press, 1999, 1:377-384.
  • 5L. Grady,Random Walks for Image Segmentation,IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768 1783,2006.
  • 6Mortensen E, Morse B,Barrett W, et al.Adaptive boundary detection using live-wiretwo-dimensional dynamic programming[C]//Proceedings of Com- puters in Cardiology. Los Alamitos IEEE Computer Society Press, 1992.. 635-638.
  • 7Kass M,Witkin A,Terzopoulos D. Snakes:active contour models[J].Inter- national Journal of. Computer Vision, 1987,1(4) .. 321-331.
  • 8Girolami M.Mercer kernel-based clus- tering in feature space[J].IEEE Trans- actions on Neural Networks, 2002, 13 (3)..780-784.
  • 9Wang J Z, Kong J,Lu Y H,et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J]. Computerized Medical Imaging and Graphics, 2008,32(8) : 685-698.
  • 10Yang X W,Zhang G Q,Lu J,et al. A kernel fuzzyc-means clustering-based fuzzy support vector machine algo- rithm for classification problems with outliers or noises [J].IEEE Transac- tions on Fuzzy Systems,2011,19(1): 105-115.

二级参考文献9

  • 1Isa N A M, Salamah S A, Ngah U K. Adaptive fuzzy moving k-means clustering algorithm for image segmentation [ J ]. IEEE Transactions on Consumer Electronics, 2009,55 ( 4 ) : 2145 - 2153.
  • 2Sabuncu M R, Yeo B T T, Van Leemput K, et al. A generative model for image segmentation based on label fusion [J ]. IEFE Transactions on Medical Imaging, 2010, 29(10):1714- 1729.
  • 3Hasanzadeh M, Kasaei S. A muhispectral image segentation method using size-weighted fuzzy clustering and membership connectedness[J ]. Geoscience and Remote Sensing Letters, 2010,7(3) :520 - 524.
  • 4Chen S C, Zhang D Q. Robust inmge segmentation using FCM with spatial constrainls based on new kernel-induced distance measure[ J ]. IEEE Transactions on Systems, Man, and Cybernetics , Part B : Cybernetics, 2004,34(4) : 1907 - 1916.
  • 5Ji Z X, Sun Q S, Xia D S. A framework with rncxtified fast FCM for brain MR images segmentation [ J ]. Pattern Recognition, 2011,44(5) :999 -1013.
  • 6Bezdek J. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981.
  • 7Wang J Z, Kong J, Lu Y H, et al. A modified FCM algorithm for MP, I brain image segmentation using both local and non-local spatial constraints [J ]. Computerized Medical lmaging and Graphics, 2008,32(8) :685 - 698.
  • 8Wang X Y, Bu J. A fast and robust image segmentation using FCM with spatial information[J]. Digital Signal Processing, 2010,20(4) : 1173 - 1182.
  • 9Yang X W, Zhang G Q, Lu J, et al. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J ]. IEEE Transactions on Fuzzy Systems, 2011,19( 1 ) : 105 - 115.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部