摘要
针对一类饱和非线性系统研究抗饱和控制器综合问题.基于线性分式表示技术(LFR),该类非线性系统可转化为带有满足扇形区间不等式条件的非线性函数及额外线性分式约束的饱和线性系统.基于二次Lyapunov方程并利用广义扇形区间不等式条件处理饱和非线性项,提出了基于LMI条件的非线性抗饱和控制器综合方法.数值仿真验证了所提出方法的有效性.
The anti-windup controller synthesis problems are studied for a certain class of nonlinear systems subject to actuator saturation. Based on the linear-fractional representation(LFR) techniques, the original system is transformed into a linear system incorporating a sector-bounded nonlinearity and a saturation nonlinearity with an additional linearfractional constraint. Based on a quadratic Lyapunov function and with a modified sector condition describing the saturation nonlinearity, LMI-based conditions for the synthesis of a nonlinear anti-windup controller are presented. A numerical example illustrates the effectiveness of the proposed approaches.
出处
《控制与决策》
EI
CSCD
北大核心
2015年第12期2225-2232,共8页
Control and Decision
基金
国家973计划项目(2014CB845301/2/3)
国家自然科学基金项目(61174053)
关键词
抗饱和控制
非线性系统
吸引域
线性矩阵不等式
anti-windup control
nonlinear systems
region of attraction
linear matrix inequalitie