期刊文献+

单边Lipschitz非线性时滞系统的函数观测器设计 被引量:2

Functional observer design for one-sided Lipschitz nonlinear systems with time-delay
原文传递
导出
摘要 基于线性矩阵不等式理论,研究一类非线性时滞系统的函数观测器设计.通过选取合适的LyapunovKrasovskii泛函,得到函数观测器增益矩阵存在的充分条件,并系统地提出函数观测器增益矩阵的设计方法.仿真实例表明,所设计的函数观测器是可行有效的. Based on the linear matrix inequality(LMI) theory, a functional observer design for one-sided Lipschitz nonlinear systems with time-delay is considered. Sufficient conditions of existence for gain matrices are given by choosing a suitable Lyapunov-Krasovskii functional. A systematic design method is presented for the gain matrices of functional observer. An example is provided to illurstrate the effectiveness of the functional observer design.
出处 《控制与决策》 EI CSCD 北大核心 2015年第12期2259-2264,共6页 Control and Decision
基金 国家自然科学基金项目(61374077) 浙江省新苗人才计划项目(2015R404050)
关键词 时滞系统 单边Lipschitz 函数观测器 LYAPUNOV-KRASOVSKII泛函 线性矩阵不等式 time-delay systems one-sided Lipschitz functional observer Lyapunov-Krasovskii functional linear matrix inequality
  • 相关文献

参考文献13

  • 1Arcak M, Kokotovic E Observer-based control of systems with slope-restricted nonlinearities[J]. IEEE Trans on Automatic Control, 2001, 46(7): 1146-1151.
  • 2马克茂,马萍.Lipschitz非线性系统观测器设计新方法[J].控制理论与应用,2003,20(4):644-646. 被引量:13
  • 3Hairer E, Norsett S P, Wanner G. Solving ordinary differential equations II: Stiff and DAE problems[M]. Berlin Heidelberg: Springer-Verlag, 1993: 56-62.
  • 4Hu G. Observers for one-sided lipschitz non-linear systems[J]. IMA J of Mathematical Control and Information, 2006, 23(4): 395-401.
  • 5Xu M, Hu G, Zhao Y. Reduced-order observer design for one-sided Lipschitz nonlinear systems[J]. IMA J of Mathematical Control and Information, 2009, 26(3): 299- 317.
  • 6Zhao Y, Tao J, Shi N Z. A note on observer design for one- sided Lipschitz nonlinear systems[J]. Systems & Control Letters, 2010, 59(1): 66-71.
  • 7Abbaszadeh M, Marquez H J. Nonlinear observer design for one-sided Lipschitz systems[C]. Proc of the American Control Conference. Baltimore: IEEE Press, 2010: 5285- 5289.
  • 8Zhang W, Su H, Liang Y, et al. Nonlinear observer design for one-sided Lipschitz systems: An linear matrix inequality approach[J]. IET Control Theory and Applications, 2012(6): 1297-1303.
  • 9Zhang W, Su H S, Wang H W, et al. Full-order and reduced- order observers for one-sided Lipschitz nonlinear systems using Riccati equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 349(10): 4968- 4977.
  • 10高虹,蔡秀珊.一类非线性系统的函数观测器设计[J].控制理论与应用,2013,30(9):1207-1210. 被引量:3

二级参考文献37

  • 1Thau F. Observing the state of nonlinear dynamic systems[J ]. International Journal of Control, 1973,17 (3) : 471-479.
  • 2Rajamani R. Observers for lipschitz nonlinear systems [J ]. IEEE Transactions on Automatic Control, 1998,43 (3) : 397-401.
  • 3Chen W T, Mehrdad S. Unknown input observer design for a class of nonlinear systems: an LMI approach [ C ]//Proc of the 2006 American Control Conference. Minneapolis, 2006:834-838.
  • 4Zhu F L, Han Z Z. A note on observers for Lipschitz nonlinear systems [ J]. IEEE Transactions on Automatic Control, 2002,47(10) : 1751-1754.
  • 5Raff T, Allgwer F. An EKF-based observer for nonlinear time-delay systems [ C] //American Control Conference ACC' 06. Minneapolis, 2006:1676 1681.
  • 6Trinh H, Aldeen M, Nahavandi S. An observer design procedure for a class of nonlinear time-delay systems [J ]. Computers & Electrical Engineering, 2004, 30 ( 1 ) : 61-71.
  • 7Xu S, Lu J, Zhou S, et al. Design of observers for a class of discrete-time uncertain nonlinear systems with time delay[J ]. Journal of the Franklin Institute, 2004,341 (3) : 295 - 308.
  • 8Zemouche A, Boutayeb M. A new observer design method for a class of Lipschitz nonlinear discrete-time systems with timedelay extension to performance analysis[ C]//The 46th IEEE Conference on Decision and Control. New Orleans, 2007:414 -419.
  • 9Lu G P. Robust observer design for Lipschitz nonlinear discrete-time systems with time-delay [ C]//9th International Conference on Control, Automation, Robotics and Vision. Singapore, 2006 : 1 5.
  • 10RAJESH R. Observer for Lipschitz nonlinear systems [J]. IEEE Trans on Automatic Control, 1998, 43(3):397 -400.

共引文献19

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部