摘要
基于深度图像的动态手势轨迹识别通常需要大量的训练数据,如何快速标定和建立姿态数据集是一个具有挑战性的任务。介绍了一种基于深度数据的关键特征点提取及动态手势轨迹识别的方法。深度数据信息经过自适应阈值算法提取人体目标,结合肤色分割出手部范围,并寻找到对应的关键特征点,最终获取手势关键特征点的轨迹。利用支持向量机对DHA数据集中有关手势的数据进行了识别和评估。实验表明介绍的方法可以实现复杂背景下的手势识别,其准确率有了进一步的提高。
This paper describes the key features point extraction based on depth data and dynamic gesture trajectory recognition.It extract human targets through adaptive threshold algorithm from the depth information,segment the range of hand by Skin,and find the corresponding key feature points.It extract the key feature point of trajectory gesture.This paper uses the DHA dataset gesture data supporting vector machine, identify and assess the concerning gesture.
出处
《工业控制计算机》
2015年第11期86-88,共3页
Industrial Control Computer
基金
国家自然科学基金(61376028)
关键词
动态手势识别
关键特征点
运动轨迹
支持向量机
dynamic gesture recognition
key feature points
trajectory
Support Vector Machine (SVM)