摘要
由于|x|^α的Lagrange插值多项式逼近|x|^α效果很差,非光滑函数|x|的有理逼近非常有效,所以考虑|x|^α有理逼近.首先构造Newman-α型有理算子,它在(-∞,+∞)与|x|6α有共单调性.然后考虑Newman-α型有理算子逼近|x|^α收敛速度,结点组X取第二类Chebyshev结点.得到确切的逼近阶仅为O(1n).这个结果虽不及|x|的有理逼近,但优于|x|^αLagrange插值逼近.
Due to the Lagrange interpolation of |x|^α approximation properties is poor, rational approximation of nonsmooth function I xl is very effective, this paper considers the rational approximation of |x|^α The Newman-α type rational operator is constructed, it has eomonotone properties with |x|^α on ( -∞,+∞ ). Then the convergence rate of the Newman-α type rational operator to |x|^α is considered based on Chebyshev notes of second kind. The exact order of approximation is only O(1n). The result is worse than ration- n al approximation of |x|, but better than the Lagrange interpolation approximation of |x|^α
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2015年第6期889-892,共4页
Journal of Sichuan Normal University(Natural Science)
基金
河北省高等学校科学技术研究青年基金(QN2014018)