期刊文献+

压缩感知的等效二维稀疏变换 被引量:1

Equivalent Two-dimensional Sparse Transform of Compressive Sensing
原文传递
导出
摘要 目前的压缩感知研究尚不能真正实现基于二维稀疏变换的影像采集和重构。通过对二维压缩感知和稀疏变换的理论分析和数学推导,将基于一维稀疏变换的二维压缩感知模型等价转换成适用于二维稀疏变换的二维压缩感知模型。从而在测量过程不变的前提下,基于一维线阵推扫数据采集方式实现了基于二维稀疏变换的压缩感知影像采集和重构。实验验证了等效二维稀疏变换的正确性。 Based on theoretical analysis and mathematical deduction of two-dimensional compressed sensing and sparse transform,two-dimensional compressed sensing model based on one-dimensional sparse transform is equivalently converted into two-dimensional compressed sensing model for two-dimensional sparse transform.Thus on the premise of unchanging measurement process,compressed sensing image acquisition and reconstruction based on twodimensional sparse transform are implemented based on one-dimensional linear array push-broom data collection methods.Experiments verify the correctness of equivalent two-dimensional sparse transform.
出处 《半导体光电》 CSCD 北大核心 2014年第6期1119-1122,共4页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(40871201)
关键词 二维压缩感知 二维稀疏变换 线阵推扫 影像重构 单像素相机 测量阶段 two-dimensional compressive sensing two-dimensional sparse transform linear array push-broom image reconstruction single-pixel camera measurement stage
  • 相关文献

参考文献5

二级参考文献49

  • 1DONOHO D.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 2CANDES E,WAKIN M.An introduction to compressive sampling:A sensing/sampling paradigm that goes against the common knowledge in data acquisition[J].IEEE signal processing magazine,2008,25(2):21-30.
  • 3BARANIUK R.Compressive sensing[J].IEEE signal processing magazine,2007,7:118-120.
  • 4DUARTE M,DAVENPORT M,TAKHAR D,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
  • 5RUDIN L,OSHER S,FATEMI E.Nonlinear total variation noise removal algorithm[J].Physica D.,1992,60(1-4):259-268.
  • 6NEFF R,ZAKHOR A.Very low bit rate video coding based on matching pursuits[J].IEEE Transactions on Circuits and Systems for Video Technology,1997,7(1):158-171.
  • 7TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 8LA C,DO M.Signal reconstruction using sparse tree representation[A].Proceedings of SPIE[C].San Diego,CA,United States:International Society for Optical Engineering,2005.5914:1-11.
  • 9DONOHO D,TSAIG Y,DRORI I,et al.Sparse solution of underdetermined linear equations by stage wise Orthogonal Matching Pursuit[R].Tech.Report.2006,Stanford,Department of Statistics,2006.
  • 10DEVORE R.Nonlinear approximation in Acta Numerica[M].U.K.:Cambridge Univ.Press Cambridge.1998,7:51-150.

共引文献125

同被引文献22

  • 1杨育彬,陈世福,林珲.一种基于颜色连通的图像纹理检索新方法[J].电子学报,2005,33(1):57-62. 被引量:16
  • 2Mohsen Zand,Shyamala Doraisamy,Alfian Abdul Halin.Texture classification and discrimination for region-based image retrieval[J].J.Vis.Comm.Image R,2015,26:305-316.
  • 3Xiaoyu Wang,Ming Yang,Timothee Cour,et al.Contextual Weighting for Vocabulary Tree based Image Retrieval[C].ICCV2011,pp.209-216,in Barcelona,Spain,November,2011.
  • 4Liang Zheng,Shengjin Wang,Ziqiong Liu,et al.Packing and padding:coupled multi-index for accurate image retrieval[C].CVPR2014,pp.1947-1954,in Columbus,Ohio,USA,June,2014.
  • 5Yong Xu,Hui Ji.Viewpoint invariant texture description using fractal analysis[J].Int.J Comput Vis,2009,83:85-100.
  • 6Yong Xu,Sibin Huang,Hui Ji.Scale-space texture description on SIFT-like textons[J].Computer vision and image understanding,2012,116:999-1013.
  • 7Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 8Candes E,Wakin M.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 9Mahdi Cheraghchi,Venkatesan Guruswami,Ameya Velingker.Restricted isometry of fourier matrices and list decodability of random linear codes[J].Proceedings of the ACM-SIAM Symposium on Discrete Algorithms(SODA),2013.
  • 10Lu Gan.Block compressed sensing of natural images[C].//15 th Inter.Conf.on Digital Signal Proc.,2007.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部