期刊文献+

基于曲波变换的地震数据压缩感知重构算法 被引量:7

Algorithm of Compressed Sensing Reconstruction of Seismic Data Based on Curvelet Transform
下载PDF
导出
摘要 为提高地震数据压缩感知重构的信噪比和保真度,提出一种基于曲波变换的地震数据压缩感知重构算法。建立了地震数据压缩感知重构模型,分析了基于曲波变换稀疏表示的地震数据各尺度之间能量与熵的分布特性,结合分块压缩感知技术降低随机观测的计算复杂度,利用曲波变换稀疏表示高频区域各尺度之间的相关性,设计了随信息熵变化的自适应双变量收缩阈值迭代重构的方法。实验结果表明,在相同的采样率下,该算法重构的地震数据峰值信噪比提高了1.5 d B以上,并且具有良好的细节信息保持能力。 In order to improve the signal to noise ratio and fidelity of seismic data by the compressed sensing reconstruction method,an algorithm of compressed sensing reconstruction of seismic data based on curvelet transform is proposed. A seismic data reconstruction model is built, the energy and entropy distribution characteristics of multi-scales seismic data based on sparse representation of curvelet are analyzed, the computational complexity of the random observation is reduced with the block compressed sensing technology,with the change of information entropy,an adapt bivariate shrinkage threshold iterative reconstruction method is designed based on the correlation between the high frequency region of multi-scales in curvelet domain.Experimental results show that the proposed algorithm gains above 1. 5 d B,and has better ability to maintain the detail information than the other algorithms mentioned,under the same sampling rate.
出处 《吉林大学学报(信息科学版)》 CAS 2015年第5期570-577,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60736043) 中国石油科技创新基金资助项目(2012D-5006-0609) 中国石油科技创新基金资助项目(2013D-5006-0203) 黑龙江省教育厅科学技术基金资助项目(12521050) 黑龙江省教育厅科学技术基金资助项目(12541087)
关键词 曲波变换 压缩感知 地震数据重构 稀疏表示 自适应收缩阈值迭代 curvelet transform compressed sensing seismic data reconstruction sparse representation adaptive iterative threshold shrinkage
  • 相关文献

参考文献24

  • 1SHAPIRO J. Embedded Image Coding Using Zerotrees of Wavelet Coefficients [ J]. IEEE Trans Signal Processing, 1993, 41 (12) : 3445-3462.
  • 2SAID A, PEARLMAN W. A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees [ J ]. IEEE Trans Circuit Systems for Video Tech, 1996, 6(3) : 243-250.
  • 3SAID A, PEARLMAN W. Image Muhiresolution Representation for Lossless and Lossy Compression [ J ]. IEEE Trans Image Processing, 1996, 6(9):1303-1310.
  • 4TAUBMAN D. High Performance Scalable Image Compression with EBCOT [ J ]. IEEE Trans on Image Processing, 2000, 9(7) : 1158-1170.
  • 5CANDS E J, ROMBERG J, TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [ J ]. IEEE Trans Inform Theory, 2006, 52 (2) : 489-509.
  • 6DONOHO D L. Compressed Sensing [J]. IEEE Trans Inform, 2006, 52(4) : 1289-1306.
  • 7焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 8ZHANG J, ZHAO D, ZHAO C, et al. Image Compressive Sensing Recovery via Collaborative Sparsity [ J ]. IEEE J on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3) : 380-391.
  • 9ELAD M, AHARON M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries [ J ]. IEEE Trans Image Process, 2006, 15(12) : 3736-3745.
  • 10唐刚,马坚伟,杨慧珠.Seismic data denoising based on learning-type overcomplete dictionaries[J].Applied Geophysics,2012,9(1):27-32. 被引量:19

二级参考文献168

  • 1粟梅,杨文.一种谐波电流的检测方法[J].控制工程,2005,12(2):190-192. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Broadhead, M., 2008, The impact of random noise on seismic wavelet estimation: The Leading Edge, 27(2), 226-230.
  • 4Candes, E., and Donoho, D., 2002, New tight frames of curvelets and optimal representations of objects with smooth singularities: Technical Report, Stanford University.
  • 5Deng, C. Z., 2008, Research on image sparse representation theory and its applications: PhD Thesis, Huazhong University of Science and Technology.
  • 6Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Trans. Image Process, 15(12), 3736-3745.
  • 7Herrmann, F., and Hennenfent, G., 2008, Non-parametricseismic data recovery with curvelet frames: Geophys. J.Int., 173, 233-248.
  • 8Meyer, F. G., 1999, Fast compression of seismic data with local trigonometric bases, in Aldroubi, A., Laine, A., and Unser, M., Eds., Wavelet VII: Proc. SPIE 3813, 648-658.
  • 9Protter, M., and Elad, M., 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans. Image Process, 18(1), 27-35.
  • 10Shan, H., Ma, J. W., and Yang, H. Z., 2009, Comparisons of wavelets, contourlets and curvelets in seismic denoising: Journal of Applied Geophysics, 69, 103-115.

共引文献383

同被引文献85

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部